OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21926–21931

Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions

S. Zhu, T.P. Chen, Z.H. Cen, E.S.M. Goh, S.F. Yu, Y.C. Liu, and Y. Liu  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21926-21931 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The split of surface plasmon resonance of self-assembled gold nanoparticles on Si substrate is observed from the dielectric functions of the nanoparticles. The split plasmon resonances are modeled with two Lorentz oscillators: one oscillator at ~1 eV models the polarization parallel to the substrate while the other at ~2 eV represents the polarization perpendicular to the substrate. Both parallel and perpendicular resonances are red-shifted when the nanoparticle size increases. The red shifts in both resonances are explained by the image charge effect of the Si substrate.

© 2010 OSA

OCIS Codes
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Optics at Surfaces

Original Manuscript: July 19, 2010
Revised Manuscript: August 26, 2010
Manuscript Accepted: September 7, 2010
Published: September 30, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

S. Zhu, T. P. Chen, Z. H. Cen, E. S. M. Goh, S. F. Yu, Y. C. Liu, and Y. Liu, "Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions," Opt. Express 18, 21926-21931 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Link, and M. A. El-Sayed, “Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals,” in Annual Review of Physical Chemistry, (2003), pp. 331–366. [PubMed]
  2. S. Underwood and P. Mulvaney, “Effect of the solution refractive-index on the color of gold colloids,” Langmuir 10(10), 3427–3430 (1994). [CrossRef]
  3. P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” Langmuir 12(3), 788–800 (1996). [CrossRef]
  4. B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997). [CrossRef]
  5. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal Reshaping of Gold Nanorods in Micelles,” J. Phys. Chem. B 102(47), 9370–9374 (1998). [CrossRef]
  6. N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008). [CrossRef] [PubMed]
  7. H. Wormeester, A. I. Henry, E. S. Kooij, B. Poelsema, and M. P. Pileni, “Ellipsometric identification of collective optical properties of silver nanocrystal arrays,” J. Chem. Phys. 124(20), 204713 (2006). [CrossRef] [PubMed]
  8. H. Wormeester, E. Stefan Kooij, A. Mewe, S. Rekveld, and B. Poelsema, “Ellipsometric characterisation of heterogeneous 2D layers,” Thin Solid Films 455–456, 323–334 (2004). [CrossRef]
  9. E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006). [CrossRef] [PubMed]
  10. R. G. Barrera, G. Monsivais, P. Villaseor, W. L. Mochán, W. L. Mochán, and del Castillo-Mussot M, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991). [CrossRef] [PubMed]
  11. H. Wormeester, E. S. Kooij, and B. Poelsema, “Unambiguous optical characterization of nanocolloidal gold films,” Phys. Rev. B 68(8), 085406 (2003). [CrossRef]
  12. S. Zhu, T. P. Chen, Z. H. Cen, Y. C. Liu, and Y. Liu, “Collective Excitations and Dielectric Function of Self-Assembled Gold Nanoparticles on a Silicon Substrate,” Electrochem. Solid-State Lett. 13(5), K39–K42 (2010). [CrossRef]
  13. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys. 90(10), 5308–5317 (2001). [CrossRef]
  14. Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories - Part I: Device design and fabrication,” IEEE Trans. Electron. Dev. 49(9), 1606–1613 (2002). [CrossRef]
  15. A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101(5), 053703 (2007). [CrossRef]
  16. T. W. H. Oates, D. R. McKenzie, and M. M. M. Bilek, “Percolation threshold in ultrathin titanium films determined by in situ spectroscopic ellipsometry,” Phys. Rev. B 70(19), 195406 (2004). [CrossRef]
  17. T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005). [CrossRef]
  18. T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009). [CrossRef]
  19. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited