OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21932–21937

Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser

Chang-Yi Lin, Frederic Grillot, Yan Li, Ravi Raghunathan, and Luke F. Lester  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21932-21937 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The timing jitter performance of a 5 GHz quantum dot passively mode-locked laser is investigated at different harmonics in the RF spectrum. The necessity of measuring the phase noise at relatively large harmonic numbers is motivated experimentally in the context of determining the corner frequency, its correlation to the RF linewidth, and the related white noise plateau level. The single-sideband phase noise with an integrated timing jitter of 211 fs (4-80 MHz) is reported. An all-microwave technique has been used to determine a pulse-to-pulse rms timing jitter of 96 fs/cycle. This low timing jitter value makes the chip-scale quantum dot mode-locked laser an attractive source for low noise applications such as optical clocking and sampling.

© 2010 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 30, 2010
Revised Manuscript: September 3, 2010
Manuscript Accepted: September 22, 2010
Published: September 30, 2010

Chang-Yi Lin, Frederic Grillot, Yan Li, Ravi Raghunathan, and Luke F. Lester, "Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser," Opt. Express 18, 21932-21937 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-GHz quantum dot laser diode,” IEEE Photon. Technol. Lett. 21(6), 389–391 (2009). [CrossRef]
  2. A. Akrout, A. Shen, A. Enard, G.-H. Duan, F. Lelarge, and A. Ramdane, “Low phase noise all-optical oscillator using quantum dash modelocked laser,” Electron. Lett. 46(1), 73–73 (2010). [CrossRef]
  3. S. Breuer, W. Elsaer, J. G. McInerney, K. Yvind, J. Pozo, E. A. J. M. Bente, M. Yousefi, A. Villafranca, N. Vogiatzis, and J. Rorison, “Investigations of Repetition Rate Stability of a Mode-Locked Quantum Dot Semiconductor Laser in an Auxiliary Optical Fiber Cavity,” IEEE J. Quantum Electron. 46(2), 150–157 (2010). [CrossRef]
  4. M. G. Thompson, D. Larsson, A. Rae, K. Yvind, R. V. Penty, I. H. White, J. Hvam, A. R. Kovsh, S. Mikhrin, D. Livshits, and I. Krestnikov, “Monolithic hybrid and passive mode-locked 40 GHz quantum dot laser diodes,” Proc. Eur. Conf. Opt. Commun. (ECOC), 1–2 (2006).
  5. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  6. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009). [CrossRef]
  7. Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006). [CrossRef]
  8. L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively mode-locked lasers,” Proc. SPIE 6115, 611502 (2006). [CrossRef]
  9. D. Von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys., B Photophys. Laser Chem. 39(4), 201–217 (1986). [CrossRef]
  10. J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 µm,” Opt. Express 16(22), 17706–17713 (2008). [CrossRef] [PubMed]
  11. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Noise characterization of pulse train generated by actively mode-locked lasers,” J. Opt. Soc. Am. B 13(7), 1619–1626 (1996). [CrossRef]
  12. “The control of jitter and wander within the optical transport network,” Recommendation G.8251, ITU-T, (2001).
  13. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14(1), 167–174 (1997). [CrossRef]
  14. F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 20(16), 1405–1407 (2008). [CrossRef]
  15. T. Yilmaz, C. M. Depriest, A. Braun, J. H. Abeles, and P. J. Delfyett, “Noise in Fundamental and Harmonic Modelocked Semiconductor Lasers: Experiments and Simulations,” IEEE J. Quantum Electron. 39(7), 838–849 (2003). [CrossRef]
  16. C.-Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96(5), 051118 (2010). [CrossRef]
  17. C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a quantum dot passively mode-locked laser at low offset frequency,” submitted to IEEE Photonics Society Annual Conference (2010).
  18. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited