OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 21981–21989

Discrete parametric band conversion in silicon for mid-infrared applications

En-Kuang Tien, Yuewang Huang, Shiming Gao, Qi Song, Feng Qian, Salih K. Kalyoncu, and Ozdal Boyraz  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 21981-21989 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon photonics has great potential for mid-wave-infrared applications. The dispersion of waveguide can be manipulated by waveguide dimension and cladding materials. Simulation shows that <3μm wide conversion can be achieved by tuning the pump wavelength.

© 2010 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Devices

Original Manuscript: July 15, 2010
Revised Manuscript: September 4, 2010
Manuscript Accepted: September 23, 2010
Published: October 1, 2010

En-Kuang Tien, Yuewang Huang, Shiming Gao, Qi Song, Feng Qian, Salih K. Kalyoncu, and Ozdal Boyraz, "Discrete parametric band conversion in silicon for mid-infrared applications," Opt. Express 18, 21981-21989 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Boyraz and B. Jalali, “Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier,” IEICE Electron. Express 1(14), 429–434 (2004). [CrossRef]
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003). [CrossRef] [PubMed]
  3. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004). [CrossRef] [PubMed]
  4. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]
  5. X. Z. Sang, E. K. Tien, N. S. Yuksek, F. Qian, Q. Song, and O. Boyraz, “Dual-wavelength mode-locked fiber laser with an intracavity silicon waveguide,” IEEE Photon. Technol. Lett. 20(13), 1184–1186 (2008). [CrossRef]
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  7. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  8. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008). [CrossRef] [PubMed]
  9. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  10. X. Zhang, S. Gao, and S. He, “Optimal Design of a Silicon-on-Insulator Nanowire Waveguide for Broadband Wavelength Conversion,” Progress in Electromagnetics Research-Pier 89, 183–198 (2009). [CrossRef]
  11. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum Electron . 16,250–256.
  12. B. Jalali, V. Raghtmathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1618–1627 (2006). [CrossRef]
  13. X. Liu, R. M. Osgood, Y. A. Vlasov, and M. J. GreenWilliam, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat Photon advance online publication(2010). [CrossRef]
  14. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]
  15. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002). [CrossRef]
  16. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998). [CrossRef]
  17. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004). [CrossRef] [PubMed]
  18. R. Allen and L. Esterowitz, “Cw Diode Pumped 2.3-Mu-M Fiber Laser,” Appl. Phys. Lett. 55(8), 721–722 (1989). [CrossRef]
  19. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009). [CrossRef] [PubMed]
  20. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a Mid-infrared silicon Raman amplifier,” Opt. Express 15(22), 14355–14362 (2007). [CrossRef] [PubMed]
  21. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]
  22. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat Photon advance online publication(2010). [CrossRef]
  23. P. Klocek, Handbook of Infrared Optical Materials (M. Dekker, New York, 1991), p. 611.
  24. P. Yang, S. Stankovic, J. Crnjanski, E. Teo, D. Thomson, A. Bettiol, M. Breese, W. Headley, C. Giusca, G. Reed, and G. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009). [CrossRef]
  25. R. A. Soref, S. J. Emelett, and A. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]
  26. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39(11), 1498–1503 (2003). [CrossRef]
  27. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003). [CrossRef]
  28. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006). [CrossRef]
  29. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93(13), 131102 (2008). [CrossRef]
  30. G. Agrawal, Nonlinear Fiber Optics, Fourth Edition (Academic Press, 2006).
  31. R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18(7), 1062–1072 (1982). [CrossRef]
  32. J. Hansryd, P. A. Andrekson, M. Westlund, L. Jie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quant. Electron. 8(3), 506–520 (2002). [CrossRef]
  33. T. Andersen, K. Hilligsøe, C. Nielsen, J. Thøgersen, K. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12(17), 4113–4122 (2004). [CrossRef] [PubMed]
  34. J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, and J. W. Cockburn, “High performance, high temperature λ≈3.7,” Appl. Phys. Lett. 95(11), 111113 (2009). [CrossRef]
  35. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited