OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22004–22009

Quantitative evaluation of boron-induced disorder in multilayers containing silicon nanocrystals in an oxide matrix designed for photovoltaic applications

G. Zatryb, A. Podhorodecki, X. J. Hao, J. Misiewicz, Y. S. Shen, and M. A. Green  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22004-22009 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (846 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of doping by boron on optical properties of multilayers containing Si-NCs were studied by means of photoluminescence (PL), time-resolved PL, photoluminescence excitation (PLE), transmission and reflection measurements. It was found that PL decay is strongly non-single exponential and can be described by means of Laplace transform of log-normal decay rates distribution. It was also proposed that changes observed in the distribution central moments reflect the disorder induced by boron-doping.

© 2010 OSA

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(310.4165) Thin films : Multilayer design
(160.4236) Materials : Nanomaterials

ToC Category:
Thin Films

Original Manuscript: July 27, 2010
Revised Manuscript: September 8, 2010
Manuscript Accepted: September 8, 2010
Published: October 1, 2010

G. Zatryb, A. Podhorodecki, X. J. Hao, J. Misiewicz, Y. S. Shen, and M. A. Green, "Quantitative evaluation of boron-induced disorder in multilayers containing silicon nanocrystals in an oxide matrix designed for photovoltaic applications," Opt. Express 18, 22004-22009 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, and Y. Huang, “Silicon quantum dots in a dielectric matrix for All-Silicon Tandem Solar Cells,” Adv. OptoElectron. 2007, 69578 (2007).
  2. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009). [CrossRef] [PubMed]
  3. M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystal,” J. Appl. Phys. 94(3), 1990 (2003). [CrossRef]
  4. Y. Kanemitsu, “Slow decay dynamics of visible luminescence in porous silicon: Hopping of carriers confined on a shell region in nanometer-size Si crystallites,” Phys. Rev. B Condens. Matter 48(16), 12357–12360 (1993). [CrossRef] [PubMed]
  5. X. J. Hao, E.-C. Cho, C. Flynn, Y. S. Shen, G. Conibeer, and M. A. Green, “Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix,” Nanotechnology 19(42), 424019 (2008). [CrossRef] [PubMed]
  6. X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” Appl. Phys. Lett. 92(12), 123102 (2008). [CrossRef]
  7. A. Podhorodecki, J. Misiewicz, F. Gourbilleau, and R. Rizk, “Absorption mechanisms of Silicon Nanocrystals in cosputtered silicon-rich-silicon oxide films,” Electrochem. Solid-State Lett. 11(3), K31 (2008). [CrossRef]
  8. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: the role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999). [CrossRef]
  9. J. Trzmiel, K. Weron, J. Janczura, and E. Placzek-Popko, “Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX center In Cd1-xMnxTe mixed crystals,” J. Phys. Condens. Matter 21(34), 345801 (2009). [CrossRef] [PubMed]
  10. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005). [CrossRef]
  11. A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models,” Phys. Rev. B 75(3), 035329 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited