OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22041–22046

Rapid fabrication of patterned high-performance conductor poly (vinylidene fluoride) surfaces using a 248nm excimer laser

Ying Liu and Yijian Jiang  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22041-22046 (2010)
http://dx.doi.org/10.1364/OE.18.022041


View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work describes a method for rapidly and conveniently fabricating high-performance conductive patterns on poly (vinylidene fluoride) substrates using a 248nm excimer laser. It shows that the artificial active centre, created by laser direct etching technique, could facilely control the formation of modified layer, avoiding the laser threshold in processing. Using the etching lines to structure the nonconductive paths, the controllable patterns can be formed in selective areas through the designed photo-mask when 248nm laser irradiation. The modified layer exhibits a high-grade electrical conductivity of 2.80 Ω−1cm−1 increased by 13 orders of magnitude, and the considerable improvement in conductivity could be attributed to the carbon enrichment, especially the structural formation of C-C.

© 2010 OSA

OCIS Codes
(140.2180) Lasers and laser optics : Excimer lasers
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 22, 2010
Revised Manuscript: September 7, 2010
Manuscript Accepted: September 9, 2010
Published: October 4, 2010

Citation
Ying Liu and Yijian Jiang, "Rapid fabrication of patterned 
high-performance conductor poly 
(vinylidene fluoride) surfaces using a 
248nm excimer laser," Opt. Express 18, 22041-22046 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Gangopadhyay and A. De, “Conducting polymer nanocomposites: A brief overview,” Chem. Mater. 12(3), 608–622 (2000). [CrossRef]
  2. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004). [CrossRef] [PubMed]
  3. A. N. Aleshin, “Polymer nanofibers and nanotubes: Change transport and device application,” Adv. Mater. (Deerfield Beach Fla.) 18(1), 17–27 (2006). [CrossRef]
  4. J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17(9), 7670–7681 (2009). [CrossRef] [PubMed]
  5. A. J. Heeger, “Semiconducting polymers: the Third Generation,” Chem. Soc. Rev. 39(7), 2354–2371 (2010). [CrossRef] [PubMed]
  6. A. Pron and P. Rannou, “Processible conjugated polymers: from organic semiconductor to organic metals and superconductors,” Prog. Polym. Sci. 27(1), 135–190 (2002). [CrossRef]
  7. U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Anal. Chim. Acta 614(1), 1–26 (2008). [CrossRef] [PubMed]
  8. D. H. Read and J. E. Martin, “Field-structured chemiresistors,” Adv. Funct. Mater. 20(10), 1577–1584 (2010). [CrossRef]
  9. J. Roncali, “Conjugated poly(thiophenes)-synthesis, functionalization, and applications,” Chem. Rev. 92(4), 711–738 (1992). [CrossRef]
  10. D. Li, J. X. Huang, and R. B. Kaner, “Polyaniline nanofibers: a unique polymer nanostructure for versatile applications,” Acc. Chem. Res. 42(1), 135–145 (2009). [CrossRef]
  11. Y. L. Ji and Y. J. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation,” Appl. Phys. Lett. 89(22), 221103 (2006). [CrossRef]
  12. R. Srinivasan, R. R. Hall, and D. C. Allbee, “Generation of electrically conducting features in polymimide (Kapton(TM)) films with continuous- wave, ultraviolet-laser radiation,” Appl. Phys. Lett. 63(24), 3382–3383 (1993). [CrossRef]
  13. Z. Y. Qin, X. Y. Huang, D. K. Wang, T. He, Q. Wang, and Y. Zhang, “Formation of conducting layer on excimer-laser-irradiated polyimide film surfaces,” Surf. Interface Anal. 29(8), 514–518 (2000). [CrossRef]
  14. C. Becker, S. Etienne, J. Bour, D. Ruch, and F. Aubriet, “Comparison of CO2 laser and atmospheric plasma treatments on the thermal stability and structural modifications of microporous poly(vinyl chloride)/Silica composites,” Eur. Phys. J. Appl. Phys. 43(3), 301–307 (2008). [CrossRef]
  15. T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. Herfurth, and R. Patwa, “XPS analysis of laser transmission micro-joint between poly(vinylidene fluoride) and titanium,” Appl. Surf. Sci. 255(5), 2569–2573 (2008). [CrossRef]
  16. Y. Wang, K. L. Ren, and Q. M. Zhang, “Direct piezolelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress,” Appl. Phys. Lett. 91(22), 222905 (2007). [CrossRef]
  17. M. D. Duca, C. L. Plosceanu, and T. Pop, “Effect of X-rays on poly (vinylidene fluoride) in X-ray photoelectron spectroscopy,” J. Appl. Polym. Sci. 67(13), 2125–2129 (1998). [CrossRef]
  18. S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of 157-nm excimer laser radiation with fluorocarbon polymers,” Appl. Surf. Sci. 255(24), 9558–9561 (2009). [CrossRef]
  19. Y. Izumi, S. Kawanishi, S. Hara, D. Yoshikawa, and T. Yamamoto, “Irradiation effect of excimer laser light on poly(vinylidene fluoride) (PVdF) film,” Bull. Chem. Soc. Jpn. 71(11), 2721–2725 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited