OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22067–22079

Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media

E. V. Garcia Ramirez, M. L. Arroyo Carrasco, M. M. Mendez Otero, S. Chavez Cerda, and M. D. Iturbe Castillo  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22067-22079 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we present a simple model that can be used to calculate the far field intensity distributions when a Gaussian beam cross a thin sample of nonlinear media but the response can be nonlocal.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

Original Manuscript: July 7, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: September 15, 2010
Published: October 4, 2010

E. V. Garcia Ramirez, M. L. Arroyo Carrasco, M. M. Mendez Otero, S. Chavez Cerda, and M. D. Iturbe Castillo, "Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media," Opt. Express 18, 22067-22079 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett. 11(3), 103–105 (1967). [CrossRef]
  2. F. W. Dabby, T. K. Gustafson, J. R. Whinnery, and Y. Kohanzadeh, “Thermally self-induced phase modulation of laser beam,” Appl. Phys. Lett. 16(9), 362–365 (1970). [CrossRef]
  3. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic-liquid-crystal film,” Opt. Lett. 6(9), 411–413 (1981). [PubMed]
  4. E. Santamato and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9(12), 564–566 (1984). [CrossRef] [PubMed]
  5. R. G. Harrison, L. Dambly, D. Yu, and W. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun. 139(1-3), 69–72 (1997). [CrossRef]
  6. A. Shevchenko, S. C. Buchter, N. V. Tabiryan, and M. Kaivola, “Creation of a hollow laser beam using self-phase modulation in a nematic liquid crystal,” Opt. Commun. 232(1-6), 77–82 (2004). [CrossRef]
  7. D. Yu, W. Lu, R. G. Harrison, and N. N. Rosanov, “Analysis of dark spot formation in absorbing liquid media,” J. Mod. Opt. 45, 2597–2606 (1998). [CrossRef]
  8. S. Brugioni and R. Meucci, “Self-phase modulation in a nematic liquid crystal film induced by a low-power CO2 laser,” Opt. Commun. 206(4-6), 445–451 (2002). [CrossRef]
  9. L. Lucchetti, S. Suchand, and F. Simoni, “Fine structure in spatial self-phase modulation patterns: at a glance determination of the sign of optical nonlinearity in highly nonlinear films,” J. Opt. A, Pure Appl. Opt. 11(3), 034002 (2009). [CrossRef]
  10. L. Deng, K. He, T. Zhou, and C. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A, Pure Appl. Opt. 7(8), 409–415 (2005). [CrossRef]
  11. C. M. Nascimento, M. Alencar, S. Chávez-Cerda, M. Da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A, Pure Appl. Opt. 8(11), 947–951 (2006). [CrossRef]
  12. F. W. Dabby and J. R. Whinnery, “Thermal self-focusing of laser beams in lead glasses,” Appl. Phys. Lett. 13(8), 284–286 (1968). [CrossRef]
  13. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–926 (1992). [CrossRef] [PubMed]
  14. D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A 48(6), 4583–4587 (1993). [CrossRef] [PubMed]
  15. W. Królikowski and O. Bang, “Solitons in nonlocal nonlinear media: Exact solutions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016610 (2000). [CrossRef]
  16. Y. R. Shen, The principles of nonlinear optics (Wiley classics library, 2003). Chap. 17.
  17. M. Born, and E. Wolf, Principles of Optics (Oxford:Pergamon, 1980). Chap. 8.
  18. W. Krolikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, and D. Edmundson, ““Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media,” J. Opt. B Quantum Semiclass. Opt. 6, S288–S294 (2004).
  19. E. W. Van Stryland, and D. Hagan, “Measuring nonlinear refraction and its dispersion” in Self-focusing: past and present, R.W. Boyd, S.G. Lukishova Bad, Y.R. Shen, Eds. (Springer, 2009) 573–591.
  20. S. A. Akhmanov, D. P. Krindach, A. P. Sukhorukov, and R. V. Khokhlov, “Nonlinear defocusing of laser beams,” JEPT Lett. 6, 38 (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited