OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22099–22104

Coherent frequency-down-conversion interface for quantum repeaters

Noé Curtz, Rob Thew, Christoph Simon, Nicolas Gisin, and Hugo Zbinden  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22099-22104 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a coherence-preserving photon frequency down-conversion experiment based on difference-frequency generation in a periodically poled Lithium niobate waveguide, at the single-photon level. The coherence of the process has been demonstrated by measuring the phase coherence of pseudo single-photon time-bin qubits after frequency conversion with an interference visibility of > 96 %. This interface could be of interest for quantum repeater based hybrid networks.

© 2010 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Quantum Optics

Original Manuscript: June 25, 2010
Revised Manuscript: August 25, 2010
Manuscript Accepted: September 24, 2010
Published: October 4, 2010

Noé Curtz, Rob Thew, Christoph Simon, Nicolas Gisin, and Hugo Zbinden, "Coherent frequency-down-conversion interface for quantum repeaters," Opt. Express 18, 22099-22104 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics (3),165–171 (2007). [CrossRef]
  2. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high-speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009). [CrossRef] [PubMed]
  3. H.-J. Briegel, W. D¨ur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998). [CrossRef]
  4. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,”(2009). arXiv:0906.2699.
  5. B. Lauritzen, J. Miná?, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010). [CrossRef] [PubMed]
  6. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007). [CrossRef] [PubMed]
  7. I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1–7 (2010). [CrossRef]
  8. T. Chaneli`ere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2010). [CrossRef]
  9. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef] [PubMed]
  10. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Entanglement demonstration of a BDCZ quantum repeater node,” Nature 454, 1098–1101 (2008). [CrossRef] [PubMed]
  11. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323(5913), 486–489 (2009). [CrossRef] [PubMed]
  12. W. Rosenfeld, S. Berner, J. Volz, M. Weber, and H. Weinfurter, “Remote preparation of an atomic quantum memory,” Phys. Rev. Lett. 98(5), 050504 (2007). [CrossRef] [PubMed]
  13. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]
  14. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008). [CrossRef]
  15. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008). [CrossRef] [PubMed]
  16. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef] [PubMed]
  17. N. Sangouard, C. Simon, J. Miná?, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76, 050301 (2007). [CrossRef]
  18. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecom wavelengths,” Nature 421, 509–513 (2003). [CrossRef] [PubMed]
  19. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006). [CrossRef]
  20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]
  21. M. A. Albota, and F. N. C. Wong, “Efficient single-photon counting at 1.55 mm by means of frequency conversion,” Opt. Lett. 29(13), 1449–1451 (2004). [CrossRef] [PubMed]
  22. A. P. VanDevender, and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  23. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003). [CrossRef]
  24. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
  25. K.-D. B¨uchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009). [CrossRef] [PubMed]
  26. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998). [CrossRef]
  27. J. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Advanced architectures for low-noise frequency conversion of quantum states using lithium niobate waveguides,” Boulder SPW poster (2009). http://photon.jqi.umd.edu/.
  28. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 20(17), 17758–17763 (2009). [CrossRef]
  29. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]
  30. Y. Ding, and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited