OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22119–22127

Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites

W. Luis Mochán, Guillermo P. Ortiz, and Bernardo S. Mendoza  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22119-22127 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a very efficient recursive method to calculate the effective optical response of metamaterials made up of arbitrarily shaped inclusions arranged in periodic 3D arrays. We apply it to dielectric particles embedded in a metal matrix with a lattice constant much smaller than the wavelength of the incident field, so that we may neglect retardation and factor the geometrical properties from the properties of the materials. If the conducting phase is continuous the low frequency behavior is metallic, and if the conducting paths are thin, the high frequency behavior is dielectric. Thus, extraordinary-transparency bands may develop at intermediate frequencies, whose properties may be tuned by geometrical manipulation.

© 2010 Optical Society of America

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: July 19, 2010
Revised Manuscript: August 30, 2010
Manuscript Accepted: September 3, 2010
Published: October 4, 2010

W. Luis Mochan, Guillermo P. Ortiz, and Bernardo S. Mendoza, "Efficient homogenization procedure for the calculation of optical properties of 3D nanostructured composites," Opt. Express 18, 22119-22127 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
  2. J. Weiner, "The physics of light transmission through subwavelength apertures and aperture arrays," Rep. Prog. Phys. 72, 0644011 (2009).
  3. L. Chen, and G. P. Wang, "Pyramid-shaped hyperlenses for three-dimensional subdiffraction optical imaging," Opt. Express 17, 3903 (2009).
  4. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).
  5. A. Salandrino, and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystal: theory and simulations," Phys. Rev. B 74, 075103 (2006).
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 1111051 (2007).
  7. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 2668021 (2007).
  8. W. Dickson, G. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. Zayats, "Dielectric-loaded plasmonic nanoantenna arrays: A metamaterial with tunable optical properties," Phys. Rev. B 76, 115411 (2007).
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science 325, 1513 (2009).
  10. B. Hou, H. Wen, Y. Leng, and W. Wen, "Enhanced transmission of electromagnetic waves through metamaterials," Appl. Phys., A Mater. Sci. Process. 87, 217 (2007).
  11. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 2439051 (2005).
  12. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847 (2004).
  13. P. Sheng, R. Stepleman, and P. Sanda, "Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations," Phys. Rev. B 26, 2907 (1982).
  14. H. Lochbihler, and R. Depine, "Highly conducting wire gratings in the resonance region," Appl. Opt. 32, 3459 (1993).
  15. H. Lochbihler, "Surface polaritons on gold-wire gratings," Phys. Rev. B 50, 4795 (1994).
  16. H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, "Surface plasmon enhanced optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
  17. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001).
  18. D. Grupp, H. Lezec, T. Ebbesen, K. Pellerin, and T. Thio, "Surface plasmon enhanced optical transmission through subwavelength holes," Appl. Phys. Lett. 77, 1569 (2000).
  19. S. Darmanyan, and A. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003).
  20. J. Porto, F. García-Vidal, and J. Pendry, "Transmission resonances on metallic gratings with narrow slits," Phys. Rev. Lett. 83, 2845 (1999).
  21. Q.-H. Park, J. H. Kang, J. W. Lee, and D. S. Kim, "Effective medium description of plasmonic metamaterials," Opt. Express 15, 6994 (2007).
  22. A. Agrawal, Z. Vardeny, and A. Nahata, "Engineering the dielectric function of plasmonic lattices," Opt. Express 16, 9601 (2008).
  23. Q. Cao, and P. Lalanne, "Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031 (2002).
  24. M. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606 (1999).
  25. M. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 1951051 (2002).
  26. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100 (2000).
  27. G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and W. Mochán, "Effective dielectric response of metamaterials," Phys. Rev. B 79, 245132 (2009).
  28. R. Haydock, "The recursive solution of the Schrödinger equation," Solid State Phys. 35, 215 (1980).
  29. S. L. Alder, "Quantum theory of the dielectric constant in real solids," Phys. Rev. 126, 413 (1962).
  30. N. Wiser, "Dielectric constant with local field effects included," Phys. Rev. 129, 62 (1963).
  31. W. L. Mochán, and R. G. Barrera, "Electromagnetic response of systems with spatial fluctuations. i. general formalism," Phys. Rev. B 32, 4984 (1985).
  32. That the long-wavelength response ?M is independent of the direction of q ? 0 allows us to use the results of longitudinal calculations to solve optical (i.e., transverse) problems.
  33. R. G. Barrera, A. Reyes-Coronado, and A. García-Valenzuela, "Nonlocal nature of the electrodynamic response of colloidal systems," Phys. Rev. B 75, 184202 (2007).
  34. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th ed.
  35. K. Glazebrook, J. Brinchmann, J. Cerney, C. DeForest, D. Hunt, T. Jenness, T. Luka, R. Schwebel, and C. Soeller, "The Perl data language v.2.4.4," Available from http://pdl.perl.org.
  36. K. Glazebrook, and F. Economou, "Pdl: The Perl data language," Dr. Dobb’s Journal (1997). http://www.ddj.com/184410442.
  37. E. Cortés, W. L. Mochán, B. S. Mendoza, and G. P. Ortiz, "Optical properties of nano-structured metamaterials," Phys. Status Solidi B 247, 2102 (2010).
  38. J. B. Keller, "Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders," J. Appl. Phys. 34, 991 (1963).
  39. J. B. Keller, "A theorem on the conductivity of a composite medium," J. Math. Phys. 5, 548 (1964).
  40. J. Nevard, and J. B. Keller, "Reciprocal relations for effective conductivities of anisotropic media," J. Math. Phys. 26, 2761 (1985).
  41. R. Fuchs, "Theory of the optical properties of ionic crystal cubes," Phys. Rev. B 11, 1732 (1975).
  42. P. Johnson, and R. Christy, "Optical constant of noble metals," Phys. Rev. B 6, 4370 (1972).
  43. W. L. Mochán, and R. G. Barrera, "Intrinsic surface-induced optical anisotropies of cubic crystals: local-field effect," Phys. Rev. Lett. 55, 1192 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited