OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22187–22198

Customised broadband metamaterial absorbers for arbitrary polarisation

Hiroki Wakatsuchi, Stephen Greedy, Christos Christopoulos, and John Paul  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22187-22198 (2010)
http://dx.doi.org/10.1364/OE.18.022187


View Full Text Article

Enhanced HTML    Acrobat PDF (3282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper shows that customised broadband absorption of electromagnetic waves having arbitrary polarisation is possible by use of lossy cut–wire (CW) metamaterials. These useful features are confirmed by numerical simulations in which different lengths of CW pairs are combined as one periodic metamaterial unit and placed near to a perfect electric conductor (PEC). So far metamaterial absorbers have exhibited some interesting features, which are not available from conventional absorbers, e.g. straightforward adjustment of electromagnetic properties and size reduction. The paper shows how with proper design a broad range of absorber characteristics may be obtained.

© 2010 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: July 30, 2010
Revised Manuscript: September 17, 2010
Manuscript Accepted: September 27, 2010
Published: October 5, 2010

Citation
Hiroki Wakatsuchi, Stephen Greedy, Christos Christopoulos, and John Paul, "Customised broadband metamaterial absorbers for arbitrary polarisation," Opt. Express 18, 22187-22198 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22187


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  2. C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications (Wiley–IEEE Press, New Jersey, 2006).
  3. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007). [CrossRef]
  4. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008). [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction–limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  7. A. Alø and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  8. Y. Lai. J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  9. R. F. Service, “Next wave of metamaterials hopes to fuel the revolution,” Science 327, 138–139 (2010). [CrossRef] [PubMed]
  10. A. A. Govyadinov, V. A. Podolskiy, and A. Noginov, “Active metamaterials: sign of refractive index and gain–assisted dispersion management,” Appl. Phys. Lett. 91, 191103 (2007). [CrossRef]
  11. X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, “Conceal an entrance by means of superscatterer,” Appl. Phys. Lett. 94, 223513 (2009). [CrossRef]
  12. D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra–thin electromagnetic bandgap absorbers,” Microwave Opt. Technol. Lett. 38(1), 61–64 (2003). [CrossRef]
  13. H. Wakatsuchi, J. Paul, S. Greedy, and C. Christopoulos, “Contribution of conductive loss to cut–wire metamaterial absorbers,” presented at 2010 Asia–Pacific Radio Science Conference (AP–RASC’10), Toyama, Japan, 22–26 Sept. 2010.
  14. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left handed material design,” Opt. Lett. 31(24), 3620–3622 (2006). [CrossRef] [PubMed]
  15. H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Thickness dependence of the optical properties of split–ring resonator metamaterials,” Phys. Status Solidi B 244(4), 1256–1261 (2007). [CrossRef]
  16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low–loss negative–index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006). [CrossRef] [PubMed]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103(2008). [CrossRef]
  18. K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P. Ajayan, “Inkjet printing of electrically conductive patterns of carbon nanotubes,” Small 2, 1021–1025 (2006). [CrossRef] [PubMed]
  19. C. Christopoulos, The transmission–line modeling method: TLM (IEEE Press, New York, 1995). [CrossRef] [PubMed]
  20. S. N. Burokur, A. Sellier, B. Kanté, and A. de Lustrac, “Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index,” Appl. Phys. Lett. 94, 201111 (2009). [CrossRef]
  21. J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Size dependence and convergence of the retrieval parameters of metamaterials,” Photon. and Nanostruct.: Fundam. and Appl. 6(1), 96–101 (2008). [CrossRef]
  22. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two–dimensional equivalent of metamaterials,” Metamaterials 3(2), 100–112 (2009). [CrossRef]
  23. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin–wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998). [CrossRef]
  24. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009). [CrossRef]
  25. H. Tao, C. M. Bingham, D. Philon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43(22), 225102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited