OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22199–22207

Photon level crosstalk between parallel fibers installed in urban area

Mikio Fujiwara, Shigehito Miki, Taro Yamashita, Zhen Wang, and Masahide Sasaki  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22199-22207 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We estimate the channel characteristics of field-installed dark fibers at single photon levels for quantum key distribution (QKD). Measured fibers are telecom single-mode dark fibers over 45 km connecting a center and suburbs of Tokyo. Their total losses are about 14dB, and 50% of the whole lengths are aerial lines. We find that stray light from other public internet fibers is dominant and crosstalk occurs at bending points in laying cables. These results mean the crosstalk from public networks can increase the bit error rate in the QKD system, and imply an underlying information leakage through an adjacent covered-fiber.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 14, 2010
Revised Manuscript: September 8, 2010
Manuscript Accepted: September 28, 2010
Published: October 5, 2010

Mikio Fujiwara, Shigehito Miki, Taro Yamashita, Zhen Wang, and Masahide Sasaki, "Photon level crosstalk between parallel fibers installed in urban area," Opt. Express 18, 22199-22207 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore India, pp 175–179, December (1984).
  2. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005). [CrossRef] [PubMed]
  3. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express 17(26), 23557–23564 (2009). [CrossRef]
  4. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35(13), 2133–2135 (2010). [CrossRef] [PubMed]
  5. Japan Gigabit Network 2 plus, http://www.jgn.nict.go.jp/jgn2plus/english/index.html .
  6. G. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single photon detector,” Appl. Phys. Lett. 79(6), 705–707 (2001). [CrossRef]
  7. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting singlephoton detectors,” Appl. Phys. Lett. 84(26), 5338–5340 (2004). [CrossRef]
  8. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008). [CrossRef] [PubMed]
  9. http://documents.exfo.com/specsheets/fcd-10b-ang.pdf .
  10. http://www.optigate.jp/products/cable/szcable.html .
  11. D. C. Chang and E. F. Kuester, “Radiation and propagation of a surface-wave mode on a curved open waveguide of arbitrary cross section,” Radio Sci. 11(5), 449–457 (1976). [CrossRef]
  12. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010). [CrossRef]
  13. M. Peev, C. Pacher, R. Alleaume, C. Barreiro, W. Boxleitner, J. Bouda, R. Tualle-Brouri, E. Diamanti, M. Dianati, T. Debuisschert, J. F. Dynes, S. Fasel, S. Fossier, M. Fuerst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentchel, H. Hübel, G. Humer, T. Länger, M. Legre, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, E. Querasser, G. Ribordy, A. Poppe, L. Salvail, S. Robyr, M. Suda, A. W. Sharpe, A. J. Shields, D. Stucki, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11(7), 1–37 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited