OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22222–22231

Linear optics based nanoscopy

Aviram Gur, Dror Fixler, Vicente Micó, Javier Garcia, and Zeev Zalevsky  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22222-22231 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Classically, optical systems are considered to have a fundamental resolution limit due to wave nature of light. This article presents a novel method for observing sub-wavelength features in a conventional optical microscope using linear optics. The operation principle is based on a random and time varying flow of nanoparticles moving in proximity to the inspected sample. Those particles excite the evanescent waves and couple them into harmonic waves. The sub-wavelength features are encoded and later on digitally decoded by proper image processing of a sequence of images. The achievable final resolution limit corresponds to the size of the nanoparticles. Experimental proof of principle validation of the technique is reported.

© 2010 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(200.4740) Optics in computing : Optical processing

ToC Category:
Image Processing

Original Manuscript: May 25, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 23, 2010
Published: October 5, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Aviram Gur, Dror Fixler, Vicente Micó, Javier Garcia, and Zeev Zalevsky, "Linear optics based nanoscopy," Opt. Express 18, 22222-22231 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie 9(1), 413–418 (1873). [CrossRef]
  2. Y. Garini, B. J. Vermolen, and I. T. Young, “From micro to nano: recent advances in high-resolution microscopy,” Curr. Opin. Biotechnol. 16(1), 3–12 (2005). [CrossRef] [PubMed]
  3. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3(8), 1152–1158 (1986). [CrossRef]
  4. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56(11), 1463–1472 (1966). [CrossRef]
  5. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, Optical systems with improved resolving power, Progress in Optics, ed., E. Wolf, (Elsevier, 2000) Vol 40, Ch. 4.
  6. Z. Zalevsky, and D. Mendlovic, Optical Super Resolution, (Springer, New York, 2002).
  7. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006). [CrossRef] [PubMed]
  8. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express 15(11), 6651–6663 (2007). [CrossRef] [PubMed]
  9. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260–19270 (2008). [CrossRef]
  10. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991). [CrossRef] [PubMed]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  12. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [CrossRef] [PubMed]
  13. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  14. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007). [CrossRef] [PubMed]
  15. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. U.S.A. 97(17), 9461–9466 (2000). [CrossRef] [PubMed]
  16. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  17. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  18. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  19. D. Semwogerere, and E. R. Weeks, Confocal Microscopy, Encyclopedia of Biomaterials and Biomedical Engineering, (Taylor & Francis, 2005).
  20. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  21. S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992). [CrossRef]
  22. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. 195(1), 10–16 (1999). [CrossRef] [PubMed]
  23. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  24. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000). [CrossRef] [PubMed]
  25. D. Toomre and D. J. Manstein, “Lighting up the cell surface with evanescent wave microscopy,” Trends Cell Biol. 11(7), 298–303 (2001). [CrossRef] [PubMed]
  26. L. Shao, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, “I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions,” Biophys. J. 94(12), 4971–4983 (2008). [CrossRef] [PubMed]
  27. O. Gliko, G. D. Reddy, B. Anvari, W. E. Brownell, and P. Saggau, “Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells,” J. Biomed. Opt. 11(6), 064013 (2006). [CrossRef]
  28. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007). [CrossRef]
  29. R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett. 33(14), 1629–1631 (2008). [CrossRef] [PubMed]
  30. E. Baleine and A. Dogariu, “Variable coherence scattering microscopy,” Phys. Rev. Lett. 95(19), 193904 (2005). [CrossRef] [PubMed]
  31. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005). [CrossRef] [PubMed]
  32. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102(21), 213905 (2009). [CrossRef] [PubMed]
  33. Z. Zalevsky, E. Saat, S. Orbach, V. Mico, and J. Garcia, “Exceeding the resolving imaging power using environmental conditions,” Appl. Opt. 47(4), A1–A6 (2008). [CrossRef] [PubMed]
  34. Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Mico, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A, Pure Appl. Opt. 11(8), 085406 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (8023 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited