OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22245–22254

Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium

Jun Liu, Kotaro Okamura, Yuichiro Kida, and Takayoshi Kobayashi  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22245-22254 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated for the first time the application of a self-diffraction (SD) process in a bulk Kerr medium to improve the temporal, spectral, and spatial qualities of femtosecond laser pulses. A proof-of-principle experiment succeeded in improving the temporal contrast of a femtosecond pulse by four orders of magnitude even in the picosecond region using a 0.5-mm-thick fused silica glass plate by this technique. The energy conversion efficiency from the incident pulses to the two first-order SD signals is about 12%. By the SD process, a laser pulse with smoother spectral shape, higher beam quality, and shorter pulse duration than those of the input pulse was generated. This technique is expected to be used to design background-free petawatt laser system in the future.

© 2010 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Nonlinear Optics

Original Manuscript: August 2, 2010
Revised Manuscript: September 5, 2010
Manuscript Accepted: September 7, 2010
Published: October 6, 2010

Jun Liu, Kotaro Okamura, Yuichiro Kida, and Takayoshi Kobayashi, "Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium," Opt. Express 18, 22245-22254 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, “High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system,” Opt. Lett. 35(10), 1497–1499 (2010). [CrossRef] [PubMed]
  2. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008). [CrossRef] [PubMed]
  3. S. V. Bulanov, T. Esirkepov, D. Habs, F. Pegoraro, and T. Tajima, “Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics,” Eur. Phys. J. D 55(2), 483–507 (2009). [CrossRef]
  4. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006). [CrossRef]
  5. P. Antici, J. Fuchs, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, S. Gaillard, L. Romagnani, Y. Sentoku, T. Toncian, O. Willi, P. Audebert, and H. Pépin, “Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets,” Phys. Plasmas 14(3), 030701–1 (2007). [CrossRef]
  6. B. Dromey, M. Zepf, A. Gopa, K. Lancaster, M. S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeck, R. Clarke, H. Habara, D. Neely, S. Karsch, and P. Norreys, “High harmonic generation in the relativistic limit,” Nat. Phys. 2(7), 456–459 (2006). [CrossRef]
  7. M. Nantel, J. Itatani, T. An-Chun, J. Faure, D. Kaplan, M. Bauvier, T. Buma, P. Van Rompay, J. Nee, P. P. Pronko, D. Umstadter, and G. A. Mourou, “Temporal contrast in Ti:sapphire lasers, characterization and control,” IEEE J. Sel. Top. Quantum Electron. 4(2), 449–458 (1998). [CrossRef]
  8. H. Kiriyama, M. Mori, Y. Nakai, Y. Yamamoto, M. Tanoue, A. Akutsu, T. Shimomura, S. Kondo, S. Kanazawa, H. Daido, T. Kimura, and N. Miyanaga, “High-energy, high-contrast, multiterawatt laser pulses by optical parametric chirped-pulse amplification,” Opt. Lett. 32(16), 2315–2317 (2007). [CrossRef] [PubMed]
  9. M. Kalashnikov, E. Risse, H. Schönnagel, A. Husakou, J. Herrmann, and W. Sandner, “Characterization of a nonlinear filter for the front-end of a high contrast double-CPA Ti:sapphire laser,” Opt. Express 12(21), 5088–5097 (2004). [CrossRef] [PubMed]
  10. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005). [CrossRef] [PubMed]
  11. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 10(11) contrast 50 TW laser pulses,” Opt. Lett. 31(10), 1456–1458 (2006). [CrossRef] [PubMed]
  12. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148(1-3), 70–74 (1998). [CrossRef]
  13. A. Renault, F. Augé-Rochereau, T. Planchon, P. Doliveira, T. Auguste, G. Cheriaux, and J. Chambaret, “ASE contrast improvement with a non-linear filtering Sagnac interferometer,” Opt. Commun. 248(4-6), 535–541 (2005). [CrossRef]
  14. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J.-C. Gauthier, J.-P. Geindre, and T. Wittmann, “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026402–1 (2004). [CrossRef] [PubMed]
  15. D. Homoelle, A. L. Gaeta, V. Yanovsky, and G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–1648 (2002). [CrossRef]
  16. A. Jullien, F. Augé-Rochereau, G. Chériaux, J. P. Chambaret, P. d’Oliveira, T. Auguste, and F. Falcoz, “High-efficiency, simple setup for pulse cleaning at the millijoule level by nonlinear induced birefringence,” Opt. Lett. 29(18), 2184–2186 (2004). [CrossRef] [PubMed]
  17. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005). [CrossRef] [PubMed]
  18. A. Cotel, A. Jullien, N. Forget, O. Albert, G. Cheriaux, and C. Le Blanc, “Nonlinear temporal pulse cleaning of a 1-mu m optical parametric chirped-pulse amplification system,” Appl. Phys. B 83(1), 7–10 (2006). [CrossRef]
  19. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11(9), 1595–1608 (1994). [CrossRef]
  20. T. S. Clement, A. J. Taylor, and D. J. Kane, “Single-shot measurement of the amplitude and phase of ultrashort laser pulses in the violet,” Opt. Lett. 20(1), 70–72 (1995). [CrossRef] [PubMed]
  21. R. Trebino, Frequency-Resolved Optical Grating: The Measurement of Ultrashort Laser Pulses, (Kluwer Academic Publishers) (2000).
  22. J. Liu, and T. Kobayashi, “Generation and amplification of tunable multicolored femtosecond laser pulses by using cascaded four-wave mixing in transparent bulk media,” Sensors 10, 4296–4341 (2010). http://www.mdpi.com/1424-8220/10/5/4296/pdf .
  23. T. Schneider, D. Wolfframm, R. Mitzner, and J. Reif, “Ultrafast optical switching by instantaneous laser-induced grating formation and self-diffraction in barium fluoride,” Appl. Phys. B 68(4), 749–751 (1999). [CrossRef]
  24. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994). [CrossRef]
  25. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Cheriaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007). [CrossRef]
  26. X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006). [CrossRef]
  27. J. Liu, X. W. Chen, J. S. Liu, Y. Zhu, Y. X. Leng, J. Dai, R. X. Li, and Z. Z. Xu, “Spectrum reshaping and pulse self-compression in normally dispersive media with negatively chirped femtosecond pulses,” Opt. Express 14(2), 979–987 (2006). [CrossRef] [PubMed]
  28. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000). [CrossRef]
  29. K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulse from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004). [CrossRef]
  30. T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010). [CrossRef]
  31. O. Gilbert, C. Deumié, and C. Amra, “Angle-resolved ellipsometry of scattering patterns from arbitrary surfaces and bulks,” Opt. Express 13(7), 2403–2418 (2005). [CrossRef] [PubMed]
  32. H. H. Hou, K. Yi, S. Z. Shang, J. D. Shao, and Z. X. Fan, “Measurements of light scattering from glass substrates by total integrated scattering,” Appl. Opt. 44(29), 6163–6166 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited