OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22283–22298

Unidirectional transmission in photonic-crystal gratings at beam-type illumination

Atilla Ozgur Cakmak, Evrim Colak, Andriy E. Serebryannikov, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22283-22298 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2678 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Unidirectional transmission is studied theoretically and experimentally for the gratings with one-side corrugations (non-symmetric gratings), which are based on two-dimensional photonic crystals composed of alumina rods. The unidirectional transmission appears at a fixed angle of incidence as a combined effect of the peculiar dispersion features of the photonic crystal and the properly designed corrugations. It is shown that the basic unidirectional transmission characteristics, which are observed at a plane-wave illumination, are preserved at Gaussian-beam and horn antenna illuminations. The main attention is paid to the single-beam unidirectional regime, which is associated with the strong directional selectivity arising due to the first negative diffraction order. An additional degree of freedom for controlling the transmission of the electromagnetic waves is obtained by making use of the asymmetric corrugations at the photonic crystal interface.

© 2010 OSA

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 16, 2010
Revised Manuscript: September 23, 2010
Manuscript Accepted: September 27, 2010
Published: October 6, 2010

Atilla Ozgur Cakmak, Evrim Colak, Andriy E. Serebryannikov, and Ekmel Ozbay, "Unidirectional transmission in photonic-crystal gratings at beam-type illumination," Opt. Express 18, 22283-22298 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008). [CrossRef] [PubMed]
  2. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  3. Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90(12), 121133 (2007). [CrossRef]
  4. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76(4), 2023 (1994). [CrossRef]
  5. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality and frozen modes in magnetic photonic crystals,” J. Magn. Magn. Mater. 300(1), 117–121 (2006). [CrossRef]
  6. A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67(16), 165210 (2003). [CrossRef]
  7. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009). [CrossRef]
  8. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20(12), 2448 (2003). [CrossRef]
  9. A. E. Serebryannikov and E. Ozbay, “Unidirectional transmission in non-symmetric gratings containing metallic layers,” Opt. Express 17(16), 13335–13345 (2009). [CrossRef] [PubMed]
  10. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009). [CrossRef] [PubMed]
  11. M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006). [CrossRef]
  12. W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18(8), 7590–7595 (2010). [CrossRef] [PubMed]
  13. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15(18), 11427–11432 (2007). [CrossRef] [PubMed]
  14. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009). [CrossRef] [PubMed]
  15. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010). [CrossRef] [PubMed]
  16. R. Petit, Electromagnetic theory of gratings (Springer, Berlin, 1980).
  17. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71(8), 085106 (2005). [CrossRef]
  18. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited