OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22314–22323

Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation

Jérémy Butet, Guillaume Bachelier, Julien Duboisset, Franck Bertorelle, Isabelle Russier-Antoine, Christian Jonin, Emmanuel Benichou, and Pierre-François Brevet  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22314-22323 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the three-dimensional mapping of 150 nm gold metallic nanoparticles dispersed in a homogeneous transparent polyacrylamide matrix using second-harmonic generation. We demonstrate that the position of single nanoparticles can be well defined using only one incident fundamental beam and the harmonic photon detection performed at right angle. The fundamental laser beam properties are determined using its spatial autocorrelation function and used to prove that single nanoparticles are observed. Polarization resolved measurements are also performed allowing for a clear separation of the second-harmonic response of the single gold metallic nanoparticles from that of aggregates of such nanoparticles.

© 2010 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

Original Manuscript: September 1, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: September 24, 2010
Published: October 6, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Jérémy Butet, Guillaume Bachelier, Julien Duboisset, Franck Bertorelle, Isabelle Russier-Antoine, Christian Jonin, Emmanuel Benichou, and Pierre-François Brevet, "Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation," Opt. Express 18, 22314-22323 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig, and M. Vollmer, Optical properties of metal cluster, Springer Series in Materials Science (Springer, Berlin, 1995).
  2. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, “Direct measurement of the single-metal-cluster optical absorption,” Phys. Rev. Lett. 93(12), 127401 (2004). [CrossRef] [PubMed]
  3. S. Marhaba, G. Bachelier, C. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface Plasmon Resonance of Single Gold Nanodimers near the Conductive Contact Limit,” J. Phys. Chem. C 113(11), 4349–4356 (2009). [CrossRef]
  4. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002). [CrossRef] [PubMed]
  5. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005). [CrossRef] [PubMed]
  6. E. M. Perassi, J. C. Hernandez-Garrido, M. S. Moreno, E. R. Encina, E. A. Coronado, and P. A. Midgley, “Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices,” Nano Lett. 10(6), 2097–2104 (2010). [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics (Academic Press, New York, 1992).
  8. B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  9. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98(16), 167403 (2007). [CrossRef] [PubMed]
  10. V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. E. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett. 104(12), 127401 (2010). [CrossRef] [PubMed]
  11. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71(16), 165407 (2005). [CrossRef]
  12. I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry Cancellations in the Quadratic Hyperpolarizability of Non-Centrosymmetric Gold Decahedra,” J. Phys. Chem. Lett. 1(5), 874–880 (2010). [CrossRef]
  13. G. S. Agarwal and S. S. Jha, “Theory of 2nd Harmonic-Generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41(6), 499–501 (1982). [CrossRef]
  14. F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102(50), 10091–10093 (1998). [CrossRef]
  15. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation,” Phys. Rev. Lett. 104(20), 207402 (2010). [CrossRef] [PubMed]
  16. J. Duboisset, I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Single Metallic Nanoparticle Sensitivity with Hyper Rayleigh Scattering,” J. Phys. Chem. C 113(31), 13477–13481 (2009). [CrossRef]
  17. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  18. R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127(36), 12482–12483 (2005). [CrossRef] [PubMed]
  19. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005). [CrossRef] [PubMed]
  20. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999). [CrossRef]
  21. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21(7), 1328 (2004). [CrossRef]
  22. V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62(16), 11152–11162 (2000). [CrossRef]
  23. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68(8), 085318 (2003). [CrossRef]
  24. J. P. Dewitz, W. Hübner, and K. H. Bennemann, Z. Phys. 37, 75–84 (1996).
  25. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78(20), 205322 (2008). [CrossRef]
  26. A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: Geometrical and chiral effects,” Phys. Rev. B 75(24), 245438 (2007). [CrossRef]
  27. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009). [CrossRef]
  28. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25(6), 955 (2008). [CrossRef]
  29. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009). [CrossRef]
  30. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Interference between Selected Dipoles and Octupoles in the Optical Second-Harmonic Generation from Spherical Gold Nanoparticles,” Phys. Rev. Lett. 105(7), 077401 (2010). [CrossRef] [PubMed]
  31. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, submitted.
  32. X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  33. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  34. J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130(21), 214710 (2009). [CrossRef] [PubMed]
  35. L. Novotny, and B. Hecht, Principles of nano-optics, (Cambridge university Press, New York, 2006).
  36. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111(26), 9044–9048 (2007). [CrossRef]
  37. P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, “Enhancement of the second harmonic response by asorbates on gold colloids: the effect of aggregation,” J. Phys. Chem. B 103(41), 8706–8710 (1999). [CrossRef]
  38. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117(13), 5963 (2002). [CrossRef]
  39. M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76(12), 125414 (2007). [CrossRef]
  40. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B 27(3), 408 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited