OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22339–22347

Effects of pump recycling technique on stimulated Brillouin scattering threshold: A theoretical model

H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22339-22347 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

© 2010 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Nonlinear Optics

Original Manuscript: August 18, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: September 28, 2010
Published: October 7, 2010

H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, "Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model," Opt. Express 18, 22339-22347 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics, 2nd ed. (New York: Academic Press, 2003).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (New York: Academic Press, 2004).
  3. E. L. Buckland and R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22(10), 676–678 (1997). [CrossRef] [PubMed]
  4. M. M. Howerton, W. K. Burns, and G. K. Gopalakrishnan, “SBS suppression using a depolarized source for high power fiber applications,” J. Lightwave Technol. 14(3), 417–422 (1996). [CrossRef]
  5. C. Hänisch, A. Heuer, and R. Menzel, “Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes,” Appl. Phys. B: Lasers Opt. 73(8), 851–854 (2001). [CrossRef]
  6. T. Sakamoto, T. Matsui, K. Shiraki, and T. Kurashima, “SBS suppressed fiber with hole-assisted structure,” J. Lightwave Technol. 27(20), 4401–4406 (2009). [CrossRef]
  7. P. Weßels, P. Adel, M. Auerbach, D. Wandt, and C. Fallnich, “Novel suppression scheme for Brillouin scattering,” Opt. Express 12(19), 4443–4448 (2004). [CrossRef] [PubMed]
  8. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003). [CrossRef] [PubMed]
  9. V. P. Kalosha, L. Chen, and X. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14(26), 12693–12703 (2006). [CrossRef] [PubMed]
  10. F. Ravet, X. Bao, Y. Li, Q. Yu, A. Yale, V. P. Kalosha, and L. Chen, “Signal processing technique for distributed Brillouin sensing at centimeter spatial resolution,” J. Lightwave Technol. 25(11), 3610–3618 (2007). [CrossRef]
  11. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15(16), 10397–10407 (2007). [CrossRef] [PubMed]
  12. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin–Erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009). [CrossRef]
  13. Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, S. Yaakob, R. Mohamed, A. K. Zamzuri, A. Man, A. Ismail, and S. Hitam, “All-optical generation of a 21 GHz microwave carrier by incorporating a double-Brillouin frequency shifter,” Opt. Lett. 35(9), 1461–1463 (2010). [CrossRef] [PubMed]
  14. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005). [CrossRef] [PubMed]
  15. K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commun. 120(1-2), 34–38 (1995). [CrossRef]
  16. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009). [CrossRef]
  17. Y. G. Shee, M. A. Mahdi, M. H. Al-Mansoori, A. Ismail, N. Hambali, A. K. Zamzuri, R. Mohamad, and S. Yaakob, “Threshold reduction of stimulated Brillouin scattering in photonic crystal fiber,” Laser Phys. 19(12), 2194–2196 (2009). [CrossRef]
  18. A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23(11), 3509–3516 (2005). [CrossRef]
  19. J. Shi, X. Chen, M. Ouyang, J. Liu, and D. Liu, “Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity,” Appl. Phys. B: Lasers Opt. 95(4), 657–660 (2009). [CrossRef]
  20. C. A. S. De Oliveira, C. K. Jen, and C. A. S. de Oliveira, “Effects of Bragg diffraction on stimulated backward Brillouin scattering,” Electron. Lett. 27(9), 780–781 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited