OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22471–22484

High resolution line scan interferometer for solder ball inspection using a visible supercontinuum source

Malay Kumar, Mohammed N. Islam, Fred L. Terry, Jr, Carl C. Aleksoff, and Douglas Davidson  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22471-22484 (2010)
http://dx.doi.org/10.1364/OE.18.022471


View Full Text Article

Enhanced HTML    Acrobat PDF (1559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A line scan interferometer, which comprises a visible supercontinuum source coupled to Fourier domain Michelson interferometer, is used to obtain 3D images of ~300 μm high solder balls on a semiconductor die with 125 nm axial and 15 μm lateral resolution. The ability to measure curved surfaces enables the determination of solder ball shape defects in addition to ball height. We show that the maximum measurable angular tilt from the sample surface normal for a given source power depends on the surface roughness of the sample. As an example, we demonstrate height measurement over +/−20 degrees from the normal on the solder balls and over +/−60 degrees on a rough steel ball bearing sample.

© 2010 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4630) Instrumentation, measurement, and metrology : Optical inspection

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 9, 2010
Revised Manuscript: October 2, 2010
Manuscript Accepted: October 3, 2010
Published: October 8, 2010

Citation
Malay Kumar, Mohammed N. Islam, Fred L. Terry, Carl C. Aleksoff, and Douglas Davidson, "High resolution line scan interferometer for solder ball inspection using a visible supercontinuum source," Opt. Express 18, 22471-22484 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14(1), 128–137 (2006). [CrossRef] [PubMed]
  2. A. Ishii and J. Mitsudo, “Constant-magnification varifocal mirror and its application to measuring three-dimensional (3-D) shape of solder bump,” IEICE Trans. Electron,” E 90, 6–11 (2007).
  3. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “Highly-sensitive and high-resolution all-fiber three-dimensional measurement system,” Appl. Opt. 47(13), 2503–2509 (2008). [CrossRef] [PubMed]
  4. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “High-speed three-dimensional measurement using electronically controlled wavelength-tunable ultrashort pulse fiber laser,” Opt. Lett. 34(13), 1921–1923 (2009). [CrossRef] [PubMed]
  5. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005). [CrossRef] [PubMed]
  6. Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh, and T. Yatagai, “Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation,” J. Biomed. Opt. 11(1), 014014 (2006). [CrossRef] [PubMed]
  7. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007). [CrossRef] [PubMed]
  8. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  9. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000). [CrossRef]
  10. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  11. M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008). [CrossRef] [PubMed]
  12. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004). [CrossRef] [PubMed]
  13. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 44009 (2005). [CrossRef] [PubMed]
  14. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  15. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14(12), 5201–5209 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited