OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22503–22514

Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings

Min Yao, Yangjian Cai, Olga Korotkova, Qiang Lin, and Zhaoying Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22503-22514 (2010)
http://dx.doi.org/10.1364/OE.18.022503


View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Matrix optics is applied to a class of random, in time and space, electromagnetic pulsed beam-like (REMPB) radiation interacting with linear optical elements. A 6 × 6 order matrix describing transformation of a six-dimensional state vector including four spatial and two temporal positions within the field is used to derive conditions for spatio-temporal coupling. An example is included which deals with a spatio-temporal coupling in a typical REMPB on reflection from a reflecting grating. Electromagnetic nature of such interaction is explored via considering dependence of the degree of polarization of the reflected REMPB on its source and on the structure of the grating.

© 2010 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(350.5500) Other areas of optics : Propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: August 17, 2010
Revised Manuscript: October 2, 2010
Manuscript Accepted: October 3, 2010
Published: October 8, 2010

Citation
Min Yao, Yangjian Cai, Olga Korotkova, Qiang Lin, and Zhaoying Wang, "Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings," Opt. Express 18, 22503-22514 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Wang and D. M. Zhao, Matrix Optics, (Springer, 2000).
  2. For the collection of original papers by R. C. Jones see W. Swindel, Polarized light, (Dowden, Hutchinson & Ross, (Stroudsburg, Pennsylvania, 1975).
  3. H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661–661 (1948); for account of the Mueller’s theory see also E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, Inc., New York, 1993). Chap. 5.
  4. O. Korotkova and E. Wolf, “Effects of linear non-image forming devices on coherence and polarization properties of random electromagnetic beams. Part I. General theory,” J. Mod. Opt. 52, 2659–2671 (2005). [CrossRef]
  5. O. Korotkova and E. Wolf, “Effects of linear non-image forming devices on spectra and on coherence and polarization properties ofstochastic electromagnetic beams. Part II. Examples,” J. Mod. Opt. 52, 2673–2685 (2005). [CrossRef]
  6. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002). [CrossRef]
  7. M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33(19), 2266–2268 (2008). [CrossRef] [PubMed]
  8. O. Korotkova, Y. Cai, and E. Watson, “Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere,” Appl. Phys. B 94(4), 681–690 (2009). [CrossRef]
  9. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988). [CrossRef]
  10. O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25(3), 296–300 (1989). [CrossRef]
  11. A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26(6), 1148–1157 (1990). [CrossRef]
  12. S. P. Dijaili, A. Dienes, and J. S. Smith, “ABCD matrices for dispersive pulse propagation,” IEEE J. Quantum Electron. 26(6), 1158–1164 (1990). [CrossRef]
  13. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimension domain,” Opt. Lett. 18(9), 669–671 (1993). [CrossRef] [PubMed]
  14. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16(4), 196–198 (1991). [CrossRef] [PubMed]
  15. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002). [CrossRef]
  16. Q. Lin, L. Wang, and S. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003). [CrossRef]
  17. L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056613 (2003). [CrossRef] [PubMed]
  18. H. Lajunen, J. Tervo, and P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21(11), 2117–2123 (2004). [CrossRef]
  19. Y. Cai and Q. Lin, “The fractional Fourier transform for a partially coherent pulse,” J. Opt. A, Pure Appl. Opt. 6(4), 307–311 (2004). [CrossRef]
  20. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andrés, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30(22), 2973–2975 (2005). [CrossRef] [PubMed]
  21. H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, “Spectrally partially coherent pulse trains in dispersive media,” Opt. Commun. 255(1-3), 12–22 (2005). [CrossRef]
  22. H. Lajunen, P. Vahimaa, and J. Tervo, “Theory of spatially and spectrally partially coherent pulses,” J. Opt. Soc. Am. A 22(8), 1536–1545 (2005). [CrossRef]
  23. V. Torres-Company, G. Mínguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32(12), 1608–1610 (2007). [CrossRef] [PubMed]
  24. A. T. Friberg, H. Lajunen, and V. Torres-Company, “Spectral elementary-coherence-function representation for partially coherent light pulses,” Opt. Express 15(8), 5160–5165 (2007). [CrossRef] [PubMed]
  25. V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77(4), 043811 (2008). [CrossRef]
  26. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andrès, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18(14), 14979–14991 (2010). [CrossRef] [PubMed]
  27. C. Ding, L. Pan, and B. Lu, “Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams,” N. J. Phys. 11(8), 083001 (2009). [CrossRef]
  28. C. Ding and B. Lu, “Spectral shifts and spectral switches of diffracted spatially and spectrally partially coherent pulsed beams in the far field,” J. Opt. A, Pure Appl. Opt. 10(9), 095006 (2008). [CrossRef]
  29. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” J. Opt. Soc. Am. B 9(7), 1158–1165 (1992). [CrossRef]
  30. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics,” Opt. Quantum Electron. 27(7), 679–692 (1995). [CrossRef]
  31. G. Piquero, R. Borghi, and M. Santarsiero, “Gaussian Schell-model beams propagating through polarization gratings,” J. Opt. Soc. Am. A 18(6), 1399–1405 (2001). [CrossRef]
  32. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic fields,” Phys. Lett. A 312(5-6), 263–267 (2003). [CrossRef]
  33. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23(4), 241–243 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited