OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22545–22555

Iterative aperture mask design in phase space using a rank constraint

Roarke Horstmeyer, Se Baek Oh, and Ramesh Raskar  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22545-22555 (2010)
http://dx.doi.org/10.1364/OE.18.022545


View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an iterative camera aperture design procedure, which determines an optimal mask pattern based on a sparse set of desired intensity distributions at different focal depths. This iterative method uses the ambiguity function as a tool to shape the camera’s response to defocus, and shares conceptual similarities with phase retrieval procedures. An analysis of algorithm convergence is presented, and experimental examples are shown to demonstrate the flexibility of the design process. This algorithm potentially ties together previous disjointed PSF design approaches under a common framework, and offers new insights for the creation of future application-specific imaging systems.

© 2010 OSA

OCIS Codes
(110.1220) Imaging systems : Apertures
(110.1758) Imaging systems : Computational imaging
(050.5082) Diffraction and gratings : Phase space in wave options

ToC Category:
Imaging Systems

History
Original Manuscript: August 27, 2010
Revised Manuscript: September 22, 2010
Manuscript Accepted: September 27, 2010
Published: October 8, 2010

Citation
Roarke Horstmeyer, Se Baek Oh, and Ramesh Raskar, "Iterative aperture mask design in phase space using a rank constraint," Opt. Express 18, 22545-22555 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  2. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001). [CrossRef]
  3. H. Zhao and Y. Li, “Optimized sinusoidal phase mask to extend the depth of field of an incoherent imaging system,” Opt. Lett. 35(2), 267–269 (2010). [CrossRef] [PubMed]
  4. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31(2), 181–183 (2006). [CrossRef] [PubMed]
  5. A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3), 70 (2007). [CrossRef]
  6. M. D. Stenner, D. J. Townsend, and M. E. Gehm, “Static Architecture for Compressive Motion Detection in Persistent, Pervasive Surveillance Applications,” in Imaging Systems, OSA technical Digest (CD) (Optical Society of America, 2010), paper IMB2. http://www.opticsinfobase.org/abstract.cfm?URI=IS-2010-IMB2
  7. A. Ashok and M. Neifeld, “Pseudo-random phase masks for superresolution imaging from subpixel shifting,” Appl. Opt. 46(12), 2256 (2007). [CrossRef] [PubMed]
  8. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane figures,” Optik (Stuttg.) 35, 237–246 (1972).
  9. J. R. Fienup, “Iterative method applied to image reconstruction and to computer generated holograms,” Opt. Eng. 19, 297–305 (1980).
  10. D. Elkind, Z. Zalevsky, U. Levy, and D. Mendlovic, “Optical transfer function shaping and depth of focus by using a phase only filter,” Appl. Opt. 42(11), 1925–1931 (2003). [CrossRef] [PubMed]
  11. W. D. Furlan, D. Zalvidea, and G. Saavedra, “Synthesis of filters for specified axial irradiance by use of phase-space tomography,” Opt. Commun. 189(1-3), 15–19 (2001). [CrossRef]
  12. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64(6), 779–788 (1974). [CrossRef]
  13. K. H. Brenner, A. Lohmann, and J. Ojeda-Castaneda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44(5), 323–326 (1983). [CrossRef]
  14. M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase Space Optics: Fundamentals and Applications, (McGraw-Hill, (2010).
  15. J. Ojeda-Castañeda, L. R. Berriel-Valdos, and E. Montes, “Ambiguity function as a design tool for high focal depth,” Appl. Opt. 27(4), 790–795 (1988). [CrossRef] [PubMed]
  16. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72(8), 1137–1140 (1994). [CrossRef] [PubMed]
  17. J. Tu and S. Tamura, “Wave-field determination using tomography of the ambiguity function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1946–1949 (1997). [CrossRef]
  18. X. Liu and K. H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225(1-3), 19–30 (2003). [CrossRef]
  19. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983). [CrossRef]
  20. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1982), Chap. 4.
  22. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72(3), 343–351 (1982). [CrossRef]
  23. H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19(8), 1563–1571 (2002). [CrossRef]
  24. L. Hogben, Handbook of Linear Algebra (Chapman & Hall, 2007) Chap. 5.
  25. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  26. R. Piestun and J. Shamir, “Synthesis of three-dimensional light fields and applications,” Proc. IEEE 90(2), 222–244 (2002). [CrossRef]
  27. A. W. Lohmann, “Three-dimensional properties of wave fields,” Optik (Stuttg.) 51, 105–117 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited