OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22578–22592

Splitting and lasing of whispering gallery modes in quantum dot micropillars

B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22578-22592 (2010)
http://dx.doi.org/10.1364/OE.18.022578


View Full Text Article

Enhanced HTML    Acrobat PDF (1886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the whispering gallery mode (WGM) resonances of GaAs/AlGaAs microcavity pillars containing InAs quantum dots. High quality factor WGMs are observed from a wide range of pillars with diameters from 1.2 to 50 μm. Multimode lasing with sub-milliwatt thresholds and high beta-factors approaching unity is observed under optical pumping in a 4 μm diameter pillar. Mode splitting is observed in WGMs from pillars with diameters of 5 μm, 20 μm and 50 μm. We develop a model in which the mode splitting in the larger pillars is caused by resonant scattering from the quantum dots themselves. The model explains why splittings are observed in all of the larger pillars and that the splitting decreases with increasing wavelength. Numerical simulations by COMSOL confirm that the model is plausible. This mechanism of splitting should be general for all circular resonant structures containing quantum dots such as microdisks, rings, toroids, and microspheres.

© 2010 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6690) Optics at surfaces : Surface waves
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(250.5960) Optoelectronics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: July 30, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 4, 2010
Published: October 8, 2010

Citation
B. D. Jones, M. Oxborrow, V. N. Astratov, M. Hopkinson, A. Tahraoui, M. S. Skolnick, and A. M. Fox, "Splitting and lasing of whispering gallery modes in quantum dot micropillars," Opt. Express 18, 22578-22592 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  2. K. Vahala, ed., Optical Microcavities (World Scientific, 2004). [CrossRef]
  3. L. Malecki, ed., Special Issue on Microresonantors, IEEE J. Sel. Top. Quant. Electron. 12, 1–155 (2006).
  4. V. N. Astratov, ed., Focus Issue on Physics and Applications of Microresonators, Opt. Express 15, 17171–17457 (2007). [CrossRef] [PubMed]
  5. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006). [CrossRef]
  6. J. P. Reithmaier, “Strong exciton-photon coupling in semiconductor quantum dots systems,” Semicond. Sci. Technol. 23, 123001 (2008). [CrossRef]
  7. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  8. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1993). [CrossRef]
  9. M. K. Chin, D. Y. Chu, and S.-T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994). [CrossRef]
  10. B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, “High–Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75, 1908–1910 (1999). [CrossRef]
  11. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Whispering gallery modes in high quality ZnSe/ZnMgSSe microdisks with CdSe quantum dots studied at room temperature,” Appl. Phys. Lett. 89, 091105 (2006). [CrossRef]
  12. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett. 89, 231104 (2006). [CrossRef]
  13. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, and O. Painter, “Optical loss and lasing characteristics of high–quality–factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005). [CrossRef]
  14. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000). [CrossRef]
  15. B. Gayral, and J. M. Gerard, “Strong Purcell effect for InAs quantum boxes in high-Q wet-etched microdisks,” Physica E (Amsterdam) 7, 641–645 (2000).
  16. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strongcoupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  17. S. Reitzenstein, and A. Forchel, “Quantum dot micropillars,” J. Phys. D Appl. Phys. 43, 033001 (2010). [CrossRef]
  18. V. N. Astratov, S. Yang, S. Lam, B. D. Jones, D. Sanvitto, D. M. Whittaker, A. M. Fox, M. S. Skolnick, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Whispering gallery resonances in semiconductor micropillars,” Appl. Phys. Lett. 91, 071115 (2007). [CrossRef]
  19. Y. R. Nowicki-Bringuier, J. Claudon, C. Bockler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gerard, “High Q whispering gallery modes in GaAs/AlAs pillar microcavities,” Opt. Express 15, 17291–17304 (2007). [CrossRef] [PubMed]
  20. P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gérard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010). [CrossRef]
  21. A. Andronico, J. Claudon, J. M. Grard, V. Berger, and G. Leo, “Integrated terahertz source based on three-wave mixing of whispering-gallery modes,” Opt. Lett. 33, 2416–2418 (2008). [CrossRef] [PubMed]
  22. K. R. Hiremath, and V. N. Astratov, “Perturbations of whispering gallery modes by nanoparticles embedded in microcavities,” Opt. Express 16, 5421–5426 (2008). [CrossRef] [PubMed]
  23. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-qualityfactor microcavity pillars,” Appl. Phys. Lett. 88, 051113 (2006). [CrossRef]
  24. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733736 (2000). [CrossRef]
  25. S. Cortez, O. Krebs, P. Voisin, and J. M. Gérard, “Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots,” Phys. Rev. B 63, 233306 (2001). [CrossRef]
  26. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, and H. M. Gibbs, “Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing,” Phys. Rev. B 72, 193303 (2005).
  27. J. A. Timpson, D. Sanvitto, A. Daraei, P. S. S. Guimaraes, H. Vinck, S. Lam, D. M. Whittaker, M. S. Skolnick, A. M. Fox, C. Y. Hu, Y. L. D. Ho, R. Gibson, J. G. Rarity, S. Pellegrini, K. J. Gordon, R. E. Warburton, G. S. Guller, A. Tahraoui, P. W. Fry, and M. Hopkinson, “Single photon sources based upon single quantum dots in semiconductor microcavity pillars,” J. Mod. Opt. 54, 453–465 (2007). [CrossRef]
  28. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Lofler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007). [CrossRef] [PubMed]
  29. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991). [CrossRef] [PubMed]
  30. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals, 2nd ed. (Springer-Verlag, 2008).
  31. W. H. Wang, S. Ghosh, F. M. Mendoza, X. Li, D. D. Awschalom, and N. Samarth, “Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots,” Phys. Rev. B 71, 155306 (2005). [CrossRef]
  32. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998). [CrossRef]
  33. S. Kako, T. Someya, and Y. Arakawa, “Observation of enhanced spontaneous emission coupling factor in nitridebased vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 80, 722–724 (2002). [CrossRef]
  34. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007). [CrossRef] [PubMed]
  35. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010). [CrossRef]
  36. T. J. Kippenberg, “Microresonators: particle sizing by mode splitting,” Nat. Photonics 4, 9–10 (2010). [CrossRef]
  37. X. Fan, P. Palingins, S. Lacey, H. Wang, and M.C. Lonergan, “Coupling semiconductor nanocrystals to a fusedsilica microsphere: a quantum-dot microcavity with extremely high Q factors,” Opt. Lett. 25, 1600–1602 (2000). [CrossRef]
  38. L. Chantada, N. I. Nikolaev, A. L. Ivanov, P. Borri, and W. Langbein, “Optical resonances in microcylinders: response to perturbations for biosensing,” J. Opt. Soc. Am. B 25, 1312–1321 (2008). [CrossRef]
  39. S. V. Goupalov, “Light scattering on exciton resonance in a semiconductor quantum dot: exact solution,” Phys. Rev. B 68, 125311 (2003). [CrossRef]
  40. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, “Kolmogorov–Arnold–Moser transition and lasing action on scar modes in semiconductor diode lasers with deformed resonators,” Opt. Lett. 27, 824–826 (2002). [CrossRef]
  41. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonator,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007). [CrossRef]
  42. T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008). [CrossRef] [PubMed]
  43. S. Adachi, “Optical disperson relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1¡xAs, and In1¡xGaxAsyP1¡y,” J. Appl. Phys. 66, 6030–6040 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited