OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22593–22598

Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers

Eric J. Zhang, Wesley D. Sacher, and Joyce K. S. Poon  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22593-22598 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An etch method based on surface tension driven flows of hydrofluoric acid microdroplets for the fabrication of low-loss, subwavelength-diameter biconical fiber tapers is presented. Tapers with losses less than 0.1 dB/mm are demonstrated, corresponding to an order of magnitude increase in the optical transmission over previous acid-etch techniques. The etch method produces adiabatic taper transitions with minimal surface corrugations. A biconical fiber taper fabricated using this method is used to demonstrate an erbium doped silica microsphere laser.

© 2010 OSA

OCIS Codes
(220.4610) Optical design and fabrication : Optical fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 5, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 2, 2010
Published: October 8, 2010

Eric J. Zhang, Wesley D. Sacher, and Joyce K. S. Poon, "Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers," Opt. Express 18, 22593-22598 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-15-1129 . [CrossRef] [PubMed]
  2. J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett. 11(11), 1429–1430 (1999). [CrossRef]
  3. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-19-1430 . [CrossRef]
  4. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96(16), 161108 (2010). [CrossRef]
  5. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  6. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18(21), 2239–2241 (2006). [CrossRef]
  7. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007). [CrossRef]
  8. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000), http://www.opticsinfobase.org/abstract.cfm?uri=ol-25-19-1415 . [CrossRef]
  9. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Exp. 16, 1300–1320 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1300 .
  10. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Exp. 12, 2258–2263 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-12-10-2258 .
  11. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  12. G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010). [CrossRef]
  13. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mater. Sci. Eng. B 97(1), 87–93 (2003). [CrossRef]
  14. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970). [CrossRef]
  15. R. Tadmor, “Marangoni flow revisited,” J. Colloid Interface Sci. 332(2), 451–454 (2009). [CrossRef] [PubMed]
  16. U. Roth, O. Paulus, and U. Menyes, “Surface activity of amphiphiles in hydrogen fluoride – water solutions,” Colloid Polym. Sci. 273(8), 800–806 (1995). [CrossRef]
  17. M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric acid,” J. Am. Ceram. Soc. 67(2), C-21–C-22 (1984). [CrossRef]
  18. S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001). [CrossRef]
  19. J. A. Voorthuyzen, K. Keskin, and P. Bergveld, “Investigations of the surface conductivity of silicon dioxide and methods to reduce it,” Surf. Sci. 187(1), 201–211 (1987). [CrossRef]
  20. T. J. Kippenberg, Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities (Doctoral dissertation, California Institute of Technology, 2004), pp. 30.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited