OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22677–22685

Design and optimization of broadband tapered optical fibers with a nanofiber waist

A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22677-22685 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (5108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The control over the transmission properties of tapered optical fibers (TOFs) is an important requirement for a whole range of applications. Using a carefully designed flame pulling process that allows us to realize preset fiber radius profiles, we fabricate TOFs with a nanofiber waist. We study the spectral transmission properties of these TOFs as a function of the taper profile and the waist length and show how the transmission band of the TOF can be tuned via different fiber profile parameters. Based on these results, we have designed a nanofiber-waist TOF with broadband transmission for surface spectroscopy of organic molecules. Moreover, our method allows us to analyze the loss mechanisms of optical nanofibers.

© 2010 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 16, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: September 30, 2010
Published: October 11, 2010

Ariane Stiebeiner, Ruth Garcia-Fernandez, and Arno Rauschenbeutel, "Design and optimization of broadband tapered optical fibers with a nanofiber waist," Opt. Express 18, 22677-22685 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. A 12, 043001 (2010). [CrossRef]
  2. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004). [CrossRef]
  3. J. Villatoro, and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005). [CrossRef] [PubMed]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273–1275 (2005). [CrossRef] [PubMed]
  5. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008). [CrossRef] [PubMed]
  6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St, “J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002). [CrossRef]
  7. J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, “Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,” Appl. Phys. B 77, 245–251 (2003). [CrossRef]
  8. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef] [PubMed]
  9. V. Grubsky, and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13, 6798–6806 (2005). [CrossRef] [PubMed]
  10. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006). [CrossRef] [PubMed]
  11. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18, 7693–7704 (2010). [CrossRef] [PubMed]
  12. G. J. Pendock, H. S. MacKenzie, and F. P. Payne, “Dye lasers using tapered optical fibers,” Appl. Opt. 32, 5236–5242 (1993). [CrossRef] [PubMed]
  13. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wavecoupled gain,” Appl. Phys. Lett. 90, 233501 (2007). [CrossRef]
  14. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15, 11952–11958 (2007). [CrossRef] [PubMed]
  15. A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17, 21704–21711 (2009). [CrossRef] [PubMed]
  16. G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-Atom Physics Using Ultrathin Optical Fibres: Light-Induced Dipole Forces and Surface Interactions,” Phys. Rev. Lett. 99, 163602 (2007). [CrossRef] [PubMed]
  17. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007). [CrossRef] [PubMed]
  18. K. P. Nayak, and K. Hakuta, “Single atoms on an optical nanofibre,” N. J. Phys. 10, 053003 (2008). [CrossRef]
  19. M. J. Morrissey, K. Deasy, Y. Q. Wu, S. Chakrabarti, and S. N. Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009). [CrossRef] [PubMed]
  20. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010). [CrossRef] [PubMed]
  21. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  22. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004). [CrossRef] [PubMed]
  23. A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 954–955 (2005). [CrossRef]
  24. M. Sumetsky, Y. Dulashko, P. Domachuk, and B. J. Eggleton, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32, 754–756 (2007). [CrossRef] [PubMed]
  25. F. Warken, A. Rauschenbeutel, and T. Bartholomäus, “Fiber pulling profits from precise positioning,” Photon. Spectra 42(3), 73 (2008).
  26. S. Pricking, and H. Giessen, “Tapering fibers with complex shape,” Opt. Express 18, 3426–3437 (2010). [CrossRef] [PubMed]
  27. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices, Part 1: Adiabaticity criteria,” IEE Proc-J 138, 343–354 (1991).
  28. T. A. Birks, and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  29. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE T. Microw. Theory MTT-18, 383–392 (1970). [CrossRef]
  30. D. T. Cassidy, D. C. Johnson, and K. O. Hill, “Wavelength-dependent transmission of monomode optical fiber tapers,” Appl. Opt. 24, 945–950 (1985). [CrossRef]
  31. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008). [CrossRef] [PubMed]
  32. A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18, 3754–3761 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited