OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22693–22701

Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping

Ori Katz, Jonathan M. Levitt, Eran Grinvald, and Yaron Silberberg  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22693-22701 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2644 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple and easily implementable scheme for multiplexed Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy and microscopy using a single femtosecond pulse, shaped with a narrow spectral notch. We show that a tunable spectral notch, shaped by a resonant photonic crystal slab, can serve as a narrowband, optimally time-delayed probe, resolving a broad vibrational spectrum with high spectral resolution in a single-shot measurement. Our single-source, single-beam scheme allows the simple transformation of any multiphoton microscope with adequate bandwidth into a nearly alignment-free CARS microscope.

© 2010 OSA

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.0320) Ultrafast optics : Ultrafast optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: July 9, 2010
Revised Manuscript: August 25, 2010
Manuscript Accepted: August 25, 2010
Published: October 12, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Ori Katz, Jonathan M. Levitt, Eran Grinvald, and Yaron Silberberg, "Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping," Opt. Express 18, 22693-22701 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Schrader, Infrared and Raman Spectroscopy (VCH, Weinheim, 1995).
  2. C. L. Evans and S. X. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008). [CrossRef]
  3. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D Appl. Phys. 38(5), R59–81 (2005). [CrossRef]
  4. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002). [CrossRef] [PubMed]
  5. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002). [CrossRef]
  6. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003). [CrossRef] [PubMed]
  7. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes CARS spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208–9215 (2003). [CrossRef]
  8. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002). [CrossRef] [PubMed]
  9. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009). [CrossRef] [PubMed]
  10. B. C. Chen and S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008). [CrossRef] [PubMed]
  11. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17(14), 11259–11266 (2009). [CrossRef] [PubMed]
  12. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008). [CrossRef] [PubMed]
  13. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92(17), 171116 (2008). [CrossRef]
  14. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48(4), B17–B22 (2009). [CrossRef] [PubMed]
  15. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000). [CrossRef]
  16. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE J. Quantum Electron. 33(11), 2038 (1997). [CrossRef]
  17. A. Thayil, A. Muriano, J. P. Salvador, R. Galve, M. P. Marco, D. Zalvidea, P. Loza-Alvarez, T. Katchalski, E. Grinvald, A. A. Friesem, and S. Soria, “Nonlinear immunofluorescent assay for androgenic hormones based on resonant structures,” Opt. Express 16(17), 13315–13322 (2008). [CrossRef] [PubMed]
  18. V. L. da Silva, Y. Silberberg, and J. P. Heritage, “Nonlinear pulse shaping and causality,” Opt. Lett. 18(8), 580 (1993). [CrossRef] [PubMed]
  19. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007). [CrossRef] [PubMed]
  20. W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009). [CrossRef]
  21. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-band laser pulses,” Appl. Phys. Lett. 85, 25 (2004). [CrossRef]
  22. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009). [CrossRef] [PubMed]
  23. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007). [CrossRef]
  24. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006). [CrossRef] [PubMed]
  25. X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nat. Phys. 4(2), 125–129 (2008). [CrossRef]
  26. D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004). [CrossRef]
  27. B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37(1-3), 404–410 (2006). [CrossRef]
  28. A. Natan, O. Katz, S. Rosenwaks, and Y. Silberberg, “Single-pulse standoff nonlinear Raman spectroscopy using shaped femtosecond pulses,” in Proceedings of Ultrafast Phenomena XVI, (Springer Series in Chemical Physics, Vol. 92, 2009), pp. 985–987.
  29. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006). [CrossRef] [PubMed]
  30. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc. 40(7), 726–731 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 5 Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited