OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22715–22721

Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper

Jochen Schröder, Stéphane Coen, Thibaut Sylvestre, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22715-22721 (2010)
http://dx.doi.org/10.1364/OE.18.022715


View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the integration of a spectral pulse-shaper into a passive mode-locked laser cavity for direct control of the output pulse-shape of the laser. Depending on the dispersion filter applied with the pulse-shaper we either observe a bright or dark “soliton-like” pulse train. The results demonstrate the strong potential of an in-cavity spectral pulse-shaper as an experimental tool for controlling the dynamics of passively mode-locked lasers.

© 2010 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 27, 2010
Revised Manuscript: September 18, 2010
Manuscript Accepted: October 5, 2010
Published: October 12, 2010

Citation
Jochen B. Schroeder, Stéphane Coen, Thibaut Sylvestre, and Benjamin J. Eggleton, "Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper," Opt. Express 18, 22715-22721 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22715


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909 (2006). [CrossRef] [PubMed]
  2. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749 (2001). [CrossRef]
  3. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004). [CrossRef]
  4. B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010). [CrossRef]
  5. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005). [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006). [CrossRef] [PubMed]
  7. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). [CrossRef] [PubMed]
  8. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002). [CrossRef]
  9. P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability ? -resonator fiber laser,” Opt. Lett. 26, 810–812 (2001). [CrossRef]
  10. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995). [CrossRef] [PubMed]
  11. S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002). [CrossRef]
  12. P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002). [CrossRef]
  13. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  14. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef] [PubMed]
  15. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001). [CrossRef] [PubMed]
  16. J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz,” Opt. Lett. 34, 3902–3904 (2009). [CrossRef] [PubMed]
  17. M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18(13), 13385–13395 (2010). [CrossRef] [PubMed]
  18. H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18(5), 4428–4433 (2010). [CrossRef] [PubMed]
  19. M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989). [CrossRef]
  20. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989). [CrossRef]
  21. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002). [CrossRef]
  22. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B 15, 1315–1321 (1998). [CrossRef]
  23. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006). [CrossRef] [PubMed]
  24. S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005). [CrossRef] [PubMed]
  25. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.
  26. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26, 73–78 (2008). [CrossRef]
  27. D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B 14, 935 (1997). [CrossRef]
  28. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37, 587–594 (2001). [CrossRef]
  29. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively modelocked Raman fiber laser,” J. Opt. Soc. Am. B 25, 1178–1186 (2008). [CrossRef]
  30. T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited