OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22734–22746

Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium

Dmitriy Korobkin, Burton Neuner, III, Chris Fietz, Nikoletta Jegenyes, Gabriel Ferro, and Gennady Shvets  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22734-22746 (2010)
http://dx.doi.org/10.1364/OE.18.022734


View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An indefinite permittivity medium (IPM) has been fabricated and optically characterized in mid-infrared spectral range (10.7 µm−11.3 µm). Phase and amplitude transmission measurements reveal two remarkable properties of IPMs: (i) transmission of sub-diffraction waves (as short as λ/4) can exceed those of diffraction-limited ones, and (ii) sub-diffraction waves can propagate with negative refractive index. We describe a novel double-detector optical technique relying on the interference between sub-diffraction and diffraction-limited waves for accurate measurement of the transmission amplitude and phase of the former.

© 2010 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Metamaterials

History
Original Manuscript: August 12, 2010
Revised Manuscript: October 5, 2010
Manuscript Accepted: October 5, 2010
Published: October 12, 2010

Citation
Dmitriy Korobkin, Burton Neuner III, Chris Fietz, Nikoletta Jegenyes, Gabriel Ferro, and Gennady Shvets, "Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium," Opt. Express 18, 22734-22746 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]
  2. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  3. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  4. I. V. Lindell, S. A. Tretyakov, K. A. Nikoskinen, and S. Ilvonen, “BW media - media with negative parameters, capable of supporting backward waves,” Microw. Opt. Technol. Lett. 31(2), 129–133 (2001). [CrossRef]
  5. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37(4), 259–263 (2003). [CrossRef]
  6. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef] [PubMed]
  7. A. J. Hoffman, A. Sridhar, P. X. Braun, L. Alekseyev, S. S. Howard, K. J. Franz, L. Cheng, F.-S. Choa, D. L. Sivco, V. A. Podolskiy, E. E. Narimanov, and C. Gmachl, “Midinfrared semiconductor optical metamaterials,” J. Appl. Phys. 105(12), 122411 (2009). [CrossRef]
  8. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006). [CrossRef]
  9. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007). [CrossRef]
  10. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  11. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21(5), 1032–1043 (2004). [CrossRef]
  12. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004). [CrossRef]
  13. D. R. Smith and D. Schurig, “Spatial filtering using media with indefinite permittivity and permeability tensor,” Appl. Phys. Lett. 82(14), 2215–2217 (2003). [CrossRef]
  14. T. Taubner, D. Korobkin, Ya. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006). [CrossRef] [PubMed]
  15. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  16. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004). [CrossRef]
  17. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80(19), 195106 (2009). [CrossRef]
  18. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” arXiv:0910.3981v2 (2009).
  19. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  20. D. Korobkin, Ya. Urzhumov, and G. Shvets, “Enhanced near-field resolution in mid-infrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006). [CrossRef]
  21. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near filed,” J. Mod. Opt. 50, 1419–1430 (2003).
  22. E. A. Ray, M. J. Hampton, and R. Lopez, “Simple demonstration of visible evanescent-wave enhancement with far-field detection,” Opt. Lett. 34(13), 2048–2050 (2009). [CrossRef] [PubMed]
  23. Y. Xiong, Zh. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007). [CrossRef] [PubMed]
  24. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  25. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34(7), 890–892 (2009). [CrossRef] [PubMed]
  26. D. E. Aspnes, “Bounds to average internal fields in two-component composites,” Phys. Rev. Lett. 48(23), 1629–1632 (1982). [CrossRef]
  27. R. A. Depine, M. E. Inchaussandague, and A. Lakhtakia, “Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials,” J. Opt. Soc. Am. A 23(4), 949–955 (2006). [CrossRef]
  28. M. J. Hernandez, G. Ferro, T. Chassagne, J. Dazord, and Y. Monteil, “Study of surface defects on 3C–SiC films grown on Si(111) by CVD,” J. Cryst. Growth 253(1-4), 95–101 (2003). [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids. (Academic Press, Orlando, Fla., 1985).
  30. W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared properties of hexagonal silicon carbide,” Phys. Rev. 113(1), 127–132 (1959). [CrossRef]
  31. N. Gedik and J. Orenstein, “Absolute phase measurement in heterodyne detection of transient gratings,” Opt. Lett. 29(18), 2109–2111 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited