OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22796–22807

Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link

Rameez Asif, Chien-Yu Lin, M. Holtmannspoetter, and Bernhard Schmauss  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22796-22807 (2010)
http://dx.doi.org/10.1364/OE.18.022796


View Full Text Article

Enhanced HTML    Acrobat PDF (1327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The parametric optimization of Digital Backward Propagation (DBP) algorithm for mitigating fiber transmission impairments is proposed and numerically demonstrated for phase modulated signals in mixed-optical fiber transmission link. The optimization of parameters i.e. dispersion (D) and non-linear coefficient (γ) offer improved eye-opening (EO). We investigate the optimization of iterative and non-iterative symmetric split-step Fourier method (S-SSFM) for solving the inverse non-linear Schrödinger equation (NLSE). Optimized DBP algorithm, with step-size equal to fiber module length i.e. one calculation step per fiber span for obtaining higher computational efficiency, is implemented at the receiver as a digital signal processing (DSP) module. The system performance is evaluated by EO-improvement for diverse in-line compensation schemes. Using computationally efficient non-iterative symmetric split-step Fourier method (NIS-SSFM) upto 3.6dB referenced EO-improvement can be obtained at 6dBm signal launch power by optimizing and modifying DBP algorithm parameters, based on the characterization of the individual fiber types, in mixed-optical fiber transmission link.

© 2010 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4250) Fiber optics and optical communications : Networks
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 13, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: October 4, 2010
Published: October 13, 2010

Citation
Rameez Asif, Chien-Yu Lin, M. Holtmannspoetter, and Bernhard Schmauss, "Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link," Opt. Express 18, 22796-22807 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Essiambre, G. Foschini, P. Winzer, G. Kramer, and E. Burrows, “The Capacity of Fiber-Optic Communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuE1.
  2. X. Liu, F. Buchali, and R. Tkach, “Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009). [CrossRef]
  3. S. L. Jansen, et al., “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” Lightwave Technology Journalism 24(1), 54–64 (2006). [CrossRef]
  4. K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express 16(3), 1923–1928 (2008). [CrossRef] [PubMed]
  5. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007). [CrossRef] [PubMed]
  6. E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” Lightwave Technology Journalism 28(4), 502–519 (2010). [CrossRef]
  7. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005). [CrossRef]
  8. G. Goldfarb, M. G. Taylor, and G. Li, “Experimental Demonstration of Fiber Impairment Compensation Using the Split-Step Finite-Impulse-Response Filtering Method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008). [CrossRef]
  9. G. Goldfarb and G. Li, “Demonstration of fibre impairment compensation using split-step infinite-impulse response filtering method,” Electron. Lett. 44(13), 814–816 (2008). [CrossRef]
  10. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1(2), 279–307 (2009). [CrossRef]
  11. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995, 2nd edn).
  12. R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006). [CrossRef]
  13. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008). [CrossRef] [PubMed]
  14. E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Effects using Digital Backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008). [CrossRef]
  15. E. Ip, A. Pak Tao Lau, D. J. F. Barros, and J. M. Kahn, “Compensation of Dispersion and Nonlinearity in WDM Transmission Using Simplified Digital Backpropagation,” IEEE/LEOS Summer Topical Meetings, 2008 Digest of the.123–124, 21–23 2008.
  16. F. Yaman and Guifang Li, “Guifang Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009). [CrossRef]
  17. Millar, D. S.; Makovejs, S.; Mikhailov, V.; Killey, R. I.; Bayvel, P.; Savory, S. J. “Experimental Comparison of Nonlinear Compensation in Long-Haul PDM-QPSK Transmission at 42.7 and 85.4 Gb/s”, ECOC 09, 9.4.4, 2009.
  18. C. Y Lin, “Michael Holtmannspoeter; M. Rameez Asif; Bernhard Schmauss; “Compensation of Transmission Imapirments by Digital Backward Propagation for Different Link Designs,” ECOC (to be published).
  19. S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004). [CrossRef]
  20. C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).
  21. G. P. Agrawal, Lightwave Technology, Telecommunication Systems (John Wiley and Sons, Inc. 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited