OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22850–22858

Surface-relief polarization gratings for visible light

Ismo Vartiainen, Jani Tervo, Jari Turunen, and Markku Kuittinen  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22850-22858 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2002 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization gratings are space-variant subwavelength-structured photonic devices that control electromagnetic wave propagation by local modulation of the state of polarization of light. Using electron beam lithography, we have fabricated such devices in the form of dielectric and metallic surface-relief profiles for operation in the visible wavelength region, where structural features with dimensions on the order of 100 nm are required. We provide experimental demonstrations of various laser-beam splitting elements with diffraction efficiencies exceeding values that could be achieved by diffractive elements operating in the framework of scalar optics.

© 2010 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: August 27, 2010
Revised Manuscript: September 21, 2010
Manuscript Accepted: September 21, 2010
Published: October 13, 2010

Ismo Vartiainen, Jani Tervo, Jari Turunen, and Markku Kuittinen, "Surface-relief polarization gratings for visible light," Opt. Express 18, 22850-22858 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. P. Herzig, Microoptics: Elements, Systems and Application (Taylor & Francis, London, 1997).
  2. J. Turunen, and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Berlin: Akademie-Verlag, 1997).
  3. F. Wyrowski, "Upper bound of the diffraction efficiency of diffractive phase elements," Opt. Lett. 16, 1915-1917 (1991). [CrossRef] [PubMed]
  4. J. Turunen, M. Kuittinen, and F. Wyrowski, "Diffractive optics: Electromagnetic approach," (Elsevier, 2000), chap. V, 343-388.
  5. F. Gori, "Measuring Stokes parameters by means of a polarization grating," Opt. Lett. 24, 584-586 (1999). [CrossRef]
  6. J. Tervo, and J. Turunen, "Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings," Opt. Lett. 25, 785-786 (2000). [CrossRef]
  7. M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, "Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings," J. Mod. Opt. 47, 2351-2359 (2000). [CrossRef]
  8. J. Tervo, V. Kettunen, M. Honkanen, and J. Turunen, "Design of space-variant diffractive polarization elements," J. Opt. Soc. Am. A 20, 282-289 (2003). [CrossRef]
  9. H. Lajunen, J. Tervo, and J. Turunen, "High-efficiency broadband diffractive elements based on polarization gratings," Opt. Lett. 29, 803-805 (2004). [CrossRef] [PubMed]
  10. H. Lajunen, J. Turunen, and J. Tervo, "Design of polarization gratings for broadband illumination," Opt. Express 13, 3055-3067 (2005). [CrossRef] [PubMed]
  11. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, "Polarization beam splitters using polarization diffraction gratings," Opt. Lett. 26, 587-589 (2001). [CrossRef]
  12. C. R. Fernández-Pousa, I. Moreno, J. A. Davis, and J. Adachi, "Polarizing diffraction-grating triplicators," Opt. Lett. 26, 1651-1653 (2001). [CrossRef]
  13. L. Nikolova, T. Todorov, V. Dragostinova, T. Petrova, and N. Tomova, "Polarization reflection holographic gratings in azobenzene-containing gelatine films," Opt. Lett. 27, 92-94 (2002). [CrossRef]
  14. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy," Appl. Opt. 35, 3835-3840 (1996). [CrossRef] [PubMed]
  15. M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, "Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties," Langmuir 23, 332-338 (2007) (PMID: 17190523.). [PubMed]
  16. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, "Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures," Opt. Commun. 209, 45-54 (2002). [CrossRef]
  17. G. M. Lerman, and U. Levy, "Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm," Opt. Lett. 33, 2782-2784 (2008). [CrossRef] [PubMed]
  18. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, "Space-variant polarization manipulation for farfield polarimetry by use of subwavelength dielectric gratings," Opt. Lett. 30, 2245-2247 (2005). [CrossRef] [PubMed]
  19. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by uv-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006). [CrossRef]
  20. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Cincotti, E. D. Fabrizio, and M. Gentili, "Analytical derivation of the optimum triplicator," Opt. Commun. 157, 13-16 (1998). [CrossRef]
  21. G. Biener, A. Niv, V. Kleiner, and E. Hasman, "Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating," J. Opt. Soc. Am. A 20, 1940-1948 (2003). [CrossRef]
  22. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  23. S. M. Norton, G. M. Morris, and T. Erdogan, "Experimental investigation of resonant-grating filter line-shapes in comparison with theoretical models," J. Opt. Soc. Am. A 15, 464-472 (1998). [CrossRef]
  24. R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Inc, Boca Raton, FL, 1984).
  25. G. Piquero, R. Borghi, and M. Santarsiero, "Gaussian Schell-model beams propagating through polarization gratings," J. Opt. Soc. Am. A 18, 1399-1405 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited