OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22880–22885

Numerical study on terahertz random lasing in disordered ruby with three-level atomic system

Jinsong Liu, Yong Liu, Jiantao Lü, and Kejia Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22880-22885 (2010)
http://dx.doi.org/10.1364/OE.18.022880


View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme to generate terahertz (THz) emission using active disordered medium made of ruby grains with a three-level atomic system is proposed via a one-dimensional model. Our computed results reveal that THz random lasing phenomenon could occur under suitable conditions. The proposed scheme is based on the pumping of the 2 A ¯ level of ruby via a ruby laser operating on its R2 line (693.9 nm), and 0.87 THz random lasing is expected on the 2 A ¯ to E ¯ transition of the split E 2 level.

© 2010 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3430) Lasers and laser optics : Laser theory
(190.5890) Nonlinear optics : Scattering, stimulated
(260.5740) Physical optics : Resonance
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 1, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: October 4, 2010
Published: October 14, 2010

Citation
Jinsong Liu, Yong Liu, Jiantao Lü, and Kejia Wang, "Numerical study on terahertz random lasing in disordered ruby with three-level atomic system," Opt. Express 18, 22880-22885 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]
  2. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]
  3. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007). [CrossRef] [PubMed]
  4. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004). [CrossRef] [PubMed]
  5. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000). [CrossRef] [PubMed]
  6. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002). [CrossRef]
  7. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65(4), 041103 (2002). [CrossRef]
  8. J. S. Liu and Z. Xiong, “Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media,” Opt. Commun. 268(2), 294–299 (2006). [CrossRef]
  9. J. S. Liu, H. Wang, and Z. Xiong, “Origin of light localization from orientational disorder in one and two-dimensional random media with uniaxial scatterers,” Phys. Rev. B 73(19), 195110 (2006). [CrossRef]
  10. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008). [CrossRef] [PubMed]
  11. T. Ito and M. Tomita, “Polarization-dependent laser action in a two-dimensional random medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(2), 027601 (2002). [CrossRef] [PubMed]
  12. C. Wang and J. S. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353(2-3), 269–272 (2006). [CrossRef]
  13. J. S. Liu, H. Lu, and C. Wang, “Spectral time evolution of quasistate modes in two-dimensional random media,” Acta Phys. Sin. 54, 3116–3122 (2005) (in Chinese).
  14. X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69(10), 104202 (2004). [CrossRef]
  15. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]
  16. X.-C. Zhang and J. Z. Xu, Introduction to THz Wave Photonics (Springer, Berlin, 2010).
  17. N. M. Lawandy, “Far-infrared lasing in ruby,” IEEE J. Quantum Electron. 6(15), 401–403 (1979). [CrossRef]
  18. E. Kuznetsova, Y. Rostovtsev, N. G. Kalugin, R. Kolesov, O. Kocharovskaya, and M. O. Scully, “Generation of coherent terahertz pulses in ruby at room temperature,” Phys. Rev. A 74(2), 023819 (2006). [CrossRef]
  19. S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, “Orbach relaxation and hyperfine structure in the excited, ” Phys. Rev. 137(4A), A1087–A1100 (1965). [CrossRef]
  20. K. F. Renk and J. Deisenhonefer, “Imprisonment of resonant phonons observed with a new technique for the detection of 10l2Hz phonons,” Phys. Rev. Lett. 26, 164–166 (1971).
  21. T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby lines in ZnTe,” IEEE J. Quantum Electron. 5(3), 140–146 (1969). [CrossRef]
  22. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010). [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  24. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited