OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22928–22936

A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm

Francois Anquez, Emmanuel Courtade, Aude Sivéry, Pierre Suret, and Stéphane Randoux  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22928-22936 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of a tunable Raman fiber ring laser especially designed for the investigation of the 3 Σ g 1 Δ g transition of molecular oxygen. Singlet oxygen (1Δg) is a reactive species of importance in the fields of biology, photochemistry, and phototherapy. Tunability of the Raman fiber ring laser is achieved without the use of an intracavity tunable bandpass filter and the laser thus achieves a slope efficiency only obtained up to now in Perot-Fabry cavities. A measurement of the action spectrum of a singlet oxygen trap is made in air-saturated ethanol and acetone to demonstrate the practical application of the tunable Raman fiber ring laser for the investigation of the 3 Σ g 1 Δ g transition of molecular oxygen.

© 2010 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(260.5130) Physical optics : Photochemistry

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 27, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: September 25, 2010
Published: October 14, 2010

Francois Anquez, Emmanuel Courtade, Aude Sivéry, Pierre Suret, and Stéphane Randoux, "A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm," Opt. Express 18, 22928-22936 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001). [CrossRef]
  2. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007). [CrossRef] [PubMed]
  3. A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24-1.34µm range,” Quantum Electron. 30, 791–793 (2000). [CrossRef]
  4. D. A. Chestnut, and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figureof-eight fiber geometries,” Opt. Lett. 30, 2982–2984 (2005). [CrossRef] [PubMed]
  5. C. Aguergaray, D. Mchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a Modelocked parabolic Raman fiber oscillator,” Opt. Express 18, 8680 (2010). [CrossRef]
  6. E. Bélanger, M. Bernier, and D. Faucher, “D. Cȏté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008). [CrossRef]
  7. A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Phys. 18, 1234–1237 (2008). [CrossRef]
  8. A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Phys. 20, 357–359 (2010). [CrossRef]
  9. P. C. Reeves-Hall, and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm,” Electron. Lett. 37, 491–492 (2001). [CrossRef]
  10. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005). [CrossRef] [PubMed]
  11. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007). [CrossRef] [PubMed]
  12. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy,” J. Natl. Cancer Inst. 90, 889–905 (1998). [CrossRef]
  13. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature 3, 380–387 (2003).
  14. A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis,” Photochem. Photobiol. 82, 1233–1240 (2006). [CrossRef] [PubMed]
  15. C. Long, and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973). [CrossRef]
  16. A. P. Losev, I. N. Nichiporovich, I. M. Byteva, N. N. Drozdov, and I. F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 181, 45–50 (1991). [CrossRef]
  17. P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999). [CrossRef]
  18. A. A. Krasnovsky, Jr., N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Mosc.) 68, 963–966 (2003). [CrossRef]
  19. A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameter of the 1Δg ←−3 Σ−g transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004). [CrossRef]
  20. A. A. Krasnovsky, Jr., N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chin. Opt. Lett. 3, S1–S4 (2005).
  21. A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in airsaturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006). [CrossRef]
  22. A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008). [CrossRef]
  23. R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977). [CrossRef]
  24. C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085-1.175-µm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977). [CrossRef]
  25. G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33, 2014–2016 (2008). [CrossRef] [PubMed]
  26. Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003). [CrossRef]
  27. Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008). [CrossRef] [PubMed]
  28. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 µm,” Electron. Lett. 34, 680–681 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited