OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22988–22995

Demonstration of high-fidelity dynamic optical arbitrary waveform generation

Nicolas K. Fontaine, David J. Geisler, Ryan P. Scott, Tingting He, Jonathan P. Heritage, and S. J. B. Yoo  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22988-22995 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a dynamic line-by-line optical arbitrary waveform generation technique capable of generating continuous and bandwidth scalable high-fidelity waveforms without update rate limitations. Two quadrature modulators are used to create up to three spectral slices that are coherently combined by a passband-shaped multiplexer into a single contiguous spectrum to form complex optical waveforms with up to 30 GHz of bandwidth and 6 ns record lengths.

© 2010 OSA

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Original Manuscript: July 26, 2010
Revised Manuscript: September 20, 2010
Manuscript Accepted: September 27, 2010
Published: October 15, 2010

Nicolas K. Fontaine, David J. Geisler, Ryan P. Scott, Tingting He, Jonathan P. Heritage, and S. J. B. Yoo, "Demonstration of high-fidelity dynamic 
optical arbitrary waveform generation," Opt. Express 18, 22988-22995 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based optical arbitrary waveform generation,” Opt. Express 17(18), 15911–15925 (2009). [CrossRef] [PubMed]
  2. P. J. Delfyett, S. Gee, Myoung-Taek Choi, H. Izadpanah, L. Wangkuen, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006). [CrossRef]
  3. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, “Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit,” Electron. Lett. 40(9), 537–538 (2004). [CrossRef]
  4. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  5. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008). [CrossRef] [PubMed]
  6. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007). [CrossRef] [PubMed]
  7. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008). [CrossRef] [PubMed]
  8. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008). [CrossRef] [PubMed]
  9. M. Akbulut, S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett, “Dynamic line-by-line pulse shaping with GHz update rate,” Opt. Express 18(17), 18284–18291 (2010). [CrossRef] [PubMed]
  10. N. K. Fontaine, “Optical arbitrary waveform generation and measurement,” Ph.D. dissertation (University of California, Davis (2010).
  11. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express 18(18), 18655–18670 (2010). [CrossRef] [PubMed]
  12. F. M. Soares, J. H. Baek, N. K. Fontaine, X. Zhou, Y. Wang, R. P. Scott, J. P. Heritage, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, S. Vatanapradit, L. A. Gruezke, W. T. Tsang, and S. J. B. Yoo, “Monolithically integrated InP wafer-scale 100-channel × 10-GHz AWG and Michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010).
  13. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  14. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]
  15. X. Yi, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Technol. 28(14), 2054–2061 (2010). [CrossRef]
  16. R. G. Lyons, Understanding Digital Signal Processing, 2nd ed. (Prentice Hall PTR, Upper Saddle River, 2004).
  17. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  18. N. K. Fontaine, R. P. Scott, L. Zhou, F. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010). [CrossRef]
  19. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited