OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22996–23008

Modeling of mode locking in a laser with spatially separate gain media

R. M. Oldenbeuving, C. J. Lee, P. D. van Voorst, H. L. Offerhaus, and K.-J. Boller  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22996-23008 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel laser mode locking scheme and discuss its unusual properties and feasibility using a theoretical model. A large set of single-frequency continuous-wave lasers oscillate by amplification in spatially separated gain media. They are mutually phase-locked by nonlinear feedback from a common saturable absorber. As a result, ultra-short pulses are generated. The new scheme offers three significant benefits: the light that is amplified in each medium is continuous-wave, thereby avoiding issues related to group-velocity dispersion and nonlinear effects that can perturb the pulse shape. The set of frequencies on which the laser oscillates, and therefore the pulse repetition rate, is controlled by the geometry of resonator-internal optical elements, not by the cavity length. Finally, the bandwidth of the laser can be controlled by switching gain modules on and off. This scheme offers a route to mode-locked lasers with high average output power, repetition rates that can be scaled into the THz range, and a bandwidth that can be dynamically controlled. The approach is particularly suited for implementation using semiconductor diode laser arrays.

© 2010 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 16, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 6, 2010
Published: October 15, 2010

R. M. Oldenbeuving, C. J. Lee, P. D. Van Voorst, H. L. Offerhaus, and K. -. Boller, "Modeling of mode locking in a laser with spatially separate gain media," Opt. Express 18, 22996-23008 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photonics 4, 289 (2010). [CrossRef]
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003). [CrossRef] [PubMed]
  3. T. Pfeiffer and G. Veith, “40 GHz pulse generation using a widely tunable all-polarization preserving erbium fiber ring laser,” Electron. Lett. 29, 1849–1850 (1993). [CrossRef]
  4. U. Keller and A. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–210 (2006). [CrossRef]
  5. A. Robertson, M. Klein, M. Tremont, K.-J. Boller, and R. Wallenstein, “2.5-GHz repetition-rate singly resonant optical parametric oscillator synchronously pumped by a mode-locked diode oscillator amplifier system,” Opt. Lett. 25, 657–659 (2000). [CrossRef]
  6. F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005). [CrossRef] [PubMed]
  7. A. Aschwanden, D. Lorenser, H. Unold, and R. Paschotta, “10 GHz passively mode-locked external-cavity semiconductor laser with 1.4 W average output power,” Appl. Phys. Lett. 86, 131102 (2005). [CrossRef]
  8. P. Harding, T. Euser, Y. Nowicki-Bringuier, J. Gérard, and W. Vos, “Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett. 91, 111103 (2007). [CrossRef]
  9. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]
  10. R. Rooth, F. van Goor, and W. Witteman, “An independently adjustable multiline AM mode-locked TEA CO2 laser,” IEEE J. Quantum Electron. QE-19, 1610–1612 (1983). [CrossRef]
  11. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett. 25, 405–407 (2000). [CrossRef]
  12. M. J. R. Heck, E. A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Simulation and design of integrated femtosecond passively mode-locked semiconductor ring lasers including integrated passive pulse shaping components,” IEEE J. Sel. Top. Quantum Electron. 12, 265–276 (2006). [CrossRef]
  13. T. Hänsch, “A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators,” Opt. Commun. 80, 71–75 (1990). [CrossRef]
  14. R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, O. Ostinelli, M. Golling, and U. Keller, “New regime of inverse saturable absorption for selfstabilizing passively modelocked lasers,” Appl. Phys. B 80, 151–158 (2005). [CrossRef]
  15. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 681–689 (1981). [CrossRef]
  16. D. Byrne, W. Guo, Q. Lu, and J. Donegan, “Broadband reflection method to measure waveguide loss,” Electron. Lett. 45, 322–323 (2009). [CrossRef]
  17. N. Trela, H. Baker, R. McBride, and D. Hall, “Low-loss wavelength locking of a 49-element single mode diode laser bar with phase-plate beam correction,” Conference Proceedings CLEO Europe - EQEC 2009 (2009).
  18. L. Eng, D. Mehuys, M. Mittelstein, and A. Yariv, “Broadband tuning (170 nm) of InGaAs quantum well lasers,” Electron. Lett. 26, 1675–1677 (1990). [CrossRef]
  19. . Siegman, Lasers (University Science Books, 1986). Chapt. 7 and 8.
  20. BATOP-GmbH, “BATOP website, a SESAM manufacturer,” http://www.batop.com (2010).
  21. K. Garner and G. Massey, “Laser mode locking by active external modulation,” IEEE J. Quantum Electron. 28, 297–301 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited