OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23035–23040

Low-loss plasmonic waveguide based on gain-assisted periodic metal nanosphere chains

Haixi Zhang and Ho-Pui Ho  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23035-23040 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a low-loss nanoscale waveguide based on gain-assisted plasmonic resonance metallic nanosphere chain. We demonstrate that by employing a gain material or even an appropriate dielectric for the host environment, waveguide loss can be reduced dramatically. A highly efficient pseudo-orthonormal basis expansion method for obtaining the complex dielectric spectra of the low-loss transmission has been developed. Eigenmode analysis revealed the physical origin of those low-loss waveguiding modes, which opens the possibility to achieve waveguiding other than using conventional dipolar resonances of individual particles. A scheme based on electron beam lithography and chemically synthesized nanoparticles has been proposed to fabricate the device.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: July 13, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 8, 2010
Published: October 18, 2010

Haixi Zhang and Ho-Pui Ho, "Low-loss plasmonic waveguide based on 
gain-assisted periodic metal nanosphere chains," Opt. Express 18, 23035-23040 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006). [CrossRef] [PubMed]
  2. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  3. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004). [CrossRef]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). [CrossRef]
  5. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007). [CrossRef] [PubMed]
  6. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001). [CrossRef]
  7. M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005). [CrossRef] [PubMed]
  8. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005). [CrossRef] [PubMed]
  9. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  10. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  11. L. Wang and W. Tan, “Multicolor FRET silica nanoparticles by single wavelength excitation,” Nano Lett. 6(1), 84–88 (2006). [CrossRef] [PubMed]
  12. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009). [CrossRef] [PubMed]
  13. V. M. Shalaev, and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science Ltd. 2007), Chap. 5.
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  15. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009). [CrossRef] [PubMed]
  16. V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12(10), 1783 (1995). [CrossRef]
  17. R. Ruppin, “Electromagnetic energy in dispersive spheres,” J. Opt. Soc. Am. A 15(2), 524 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited