OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23088–23094

Femtosecond ultrashort pulse generation by addition of positive material dispersion

Takayuki Suzuki and Masayuki Katsuragawa  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23088-23094 (2010)
http://dx.doi.org/10.1364/OE.18.023088


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate femtosecond ultrashort pulse generation by adding further positive group velocity dispersion (GVD) to compensate for the presence of positive GVD. The idea is based on the integer temporal Talbot phenomenon. The broad Raman sidebands with a frequency spacing of 10.6 THz are compressed to form a train of Fourier-transform-limited pulses by passing the sidebands through a device made of dispersive material of variable thickness.

© 2010 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.5650) Nonlinear optics : Raman effect
(320.5520) Ultrafast optics : Pulse compression
(320.7160) Ultrafast optics : Ultrafast technology
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 7, 2010
Revised Manuscript: October 10, 2010
Manuscript Accepted: October 13, 2010
Published: October 18, 2010

Citation
Takayuki Suzuki and Masayuki Katsuragawa, "Femtosecond ultrashort pulse generation by addition of positive material dispersion," Opt. Express 18, 23088-23094 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984). [CrossRef] [PubMed]
  2. E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969). [CrossRef]
  3. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994). [CrossRef] [PubMed]
  4. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22(23), 1793–1795 (1997). [CrossRef]
  5. J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975). [CrossRef]
  6. J. Azana and M. A. Muriel, “Temporal Self-Imaging Effects: Theory and Application for Multiplying Pulse Repetition Rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001). [CrossRef]
  7. N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004). [CrossRef]
  8. M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005). [CrossRef] [PubMed]
  9. M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005). [CrossRef] [PubMed]
  10. T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007). [CrossRef] [PubMed]
  11. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997). [CrossRef]
  12. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000). [CrossRef] [PubMed]
  13. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000). [CrossRef] [PubMed]
  14. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001). [CrossRef] [PubMed]
  15. T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008). [CrossRef] [PubMed]
  16. T. Suzuki, N. Sawayama, and M. Katsuragawa, “Spectral phase measurements for broad Raman sidebands by using spectral interferometry,” Opt. Lett. 33(23), 2809–2811 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited