OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23121–23132

Compensation of spatial inhomogeneities in a cavity soliton laser using a spatial light modulator

Neal Radwell, Patrick Rose, Carsten Cleff, Cornelia Denz, and Thorsten Ackemann  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23121-23132 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dissipative solitons are self-localized states which can exist anywhere in a system with translational symmetry, but in real systems this translational symmetry is usually broken due to parasitic inhomogeneities leading to spatial disorder, pinning the soliton positions. We discuss the effects of semiconductor growth induced spatial disorder on the operation of a cavity soliton laser based on a vertical-cavity surface-emitting laser (VCSEL). We show that a refractive index variation induced by an external, suitably spatially modulated laser beam can be used to counteract the inherent disorder. In particular, it is demonstrated experimentally that the threshold of one cavity soliton can be lowered without influencing other cavity solitons making two solitons simultaneously bistable which were not without control. This proof of principle paves the way to achieve full control of large numbers of cavity solitons at the same time.

© 2010 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: June 4, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 11, 2010
Published: October 19, 2010

Neal Radwell, Patrick Rose, Carsten Cleff, Cornelia Denz, and Thorsten Ackemann, "Compensation of spatial inhomogeneities in a cavity soliton laser using a spatial light modulator," Opt. Express 18, 23121-23132 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999). [CrossRef] [PubMed]
  2. M. Segev, “Solitons: a universal phenomenon of self-trapped wave packets,” Opt. & Photon. News 13, 27 (2002). Introduction to special issue on Solitons. [CrossRef]
  3. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductors,” Nature 419, 699–702 (2002). [CrossRef] [PubMed]
  4. N. Akhmediev and A. Ankiewicz, eds., Dissipative solitons, Vol. 661 of Lecture Notes in Physics (Springer, Berlin, 2005).
  5. T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009). [CrossRef]
  6. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008). [CrossRef]
  7. Y. Tanguy, T. Ackemann, and R. J¨ager, “Characteristics of switching in a semiconductor based cavity-soliton laser,” Opt. Express 15, 16773–16780 (2007). [CrossRef] [PubMed]
  8. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008). [CrossRef] [PubMed]
  9. Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008). [CrossRef]
  10. P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008). [CrossRef] [PubMed]
  11. N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE J. Quantum Electron. 45, 1388–1395 (2009). [CrossRef]
  12. T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010). [CrossRef]
  13. N. N. Rosanov, “Switching waves, autosolitons, and parallel digital-analogous optical computing,” Proc. SPIE 1840, 130–143 (1991).
  14. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996). [CrossRef] [PubMed]
  15. B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern–forming system,” Proc. SPIE 4271, 130–137 (2001). [CrossRef]
  16. C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008). [CrossRef] [PubMed]
  17. F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008). [CrossRef]
  18. S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008). [CrossRef] [PubMed]
  19. P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009). [CrossRef]
  20. R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000). [CrossRef] [PubMed]
  21. E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009). [CrossRef] [PubMed]
  22. E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009). [CrossRef]
  23. B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003). [CrossRef]
  24. I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008). [CrossRef] [PubMed]
  25. M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009). [CrossRef]
  26. H. Pier and E. Kapon, “Photon localization in lattices of coupled vertical-cavity surface-emitting lasers with dimensionalities between one and two,” Opt. Lett. 22, 546–548 (1997). [CrossRef] [PubMed]
  27. S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002). [CrossRef]
  28. C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999). [CrossRef]
  29. B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005). [CrossRef]
  30. U. Bortolozzo and S. Residori, “Storage of localized structure matrices in nematic liquid crystals,” Phys. Rev. Lett. 96, 037801 (2006). [CrossRef] [PubMed]
  31. B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007). [CrossRef] [PubMed]
  32. F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006). [CrossRef]
  33. Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999). [CrossRef]
  34. M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005). [CrossRef]
  35. M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009). [CrossRef]
  36. P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008). [CrossRef]
  37. N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010). [CrossRef]
  38. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]
  39. A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009). [CrossRef]
  40. F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited