OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23133–23146

Waveguiding mechanism in tube lattice fibers

Luca Vincetti and Valerio Setti  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23133-23146 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Waveguiding mechanism and modal characteristics of hollow core fibers consisting of a single or a regular arrangement of dielectric tubes are investigated. These fibers have been recently proposed as low loss, broadband THz waveguides. By starting from a description in terms of coupling between air and dielectric modes in a single tube waveguide, a simple and useful model is proposed and numerically validated. It is able to predict dispersion curves, high and low loss spectral regions, and the conditions to ensure the existence of low loss regions. In addition, it allows a better understanding of the role of the geometrical parameters and of the dielectric refractive index. The model is then applied to improve the tradeoff between low loss and effectively single mode propagation, showing that the best results are obtained with a heptagonal arrangement of the tubes.

© 2010 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 10, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 11, 2010
Published: October 19, 2010

Luca Vincetti and Valerio Setti, "Waveguiding mechanism in tube lattice fibers," Opt. Express 18, 23133-23146 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]
  3. M. Naftaly and R. E. Miles, “Terahertz Time-Domain spectroscopy for Material Characterization,” Proc. IEEE 95(8), 1658–1665 (2007). [CrossRef]
  4. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), 317–319 (2004). [CrossRef]
  5. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981). [CrossRef]
  6. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998). [CrossRef]
  7. Y. Jin, G. Kim, and S. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  8. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  9. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007). [CrossRef]
  10. R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007). [CrossRef]
  11. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005). [CrossRef]
  12. T. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfield wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005). [CrossRef]
  13. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  14. C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281(5), 1129–1133 (2008). [CrossRef]
  15. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding” Opt. Express 16, 6340–6351 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6340 .
  16. S. Atakaramians, S. Afshar Vahid, H. Ebendorff-Heidepriem, M. Nagel, B. Fischer, D. Abbott, and T. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062, http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-16-14053 .
  17. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 09004 (2009). [CrossRef]
  18. P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  19. F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A. 364(1849), 3439–3462 (2006). [CrossRef]
  20. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  21. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91(2), 333–336 (2008). [CrossRef]
  22. L. Vincetti, “Hollow core photonic band gap fibre for THz Applications,” Microwave Opt. Technol. Lett. 51(7), 1711–1714 (2009). [CrossRef]
  23. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 64105 (2008). [CrossRef]
  24. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009). [CrossRef]
  25. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283(6), 979–984 (2010). [CrossRef]
  26. F. Couny and F. Benabid, “P. J. robets, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318, 118–121 (2007).
  27. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-12-7713 .
  28. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-12680 .
  29. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20626 .
  30. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5642 .
  31. C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-1-309 .
  32. M. Kharadly, and J. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214–224 (1969).
  33. E. Marcatili and R. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 1783–1809 (1964).
  34. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001). [CrossRef]
  35. L. Vincetti, V. Setti, and M. Zoboli, “Terahertz Tube Lattice Fibers With Octagonal Symmetry,” IEEE Photon. Technol. Lett. 22(13), 972–974 (2010). [CrossRef]
  36. L. Vincetti, “Confinement losses in honeycomb fibers,” IEEE Photon. Technol. Lett. 16(9), 2048–2050 (2004). [CrossRef]
  37. L. Vincetti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009). [CrossRef]
  38. A. Cucinotta, G. Pelosi, S. Selleri, L. Vincetti, and M. Zoboli, “Perfectly Matched Anisotropic Layers for Optical Waveguides Analysis through the Finite Element Beam Propagation Method,” Microw. Opt. Technol. Lett. 23(2), 67–69 (1999). [CrossRef]
  39. D. Chen, and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-4-3762 .
  40. K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-3-394 .
  41. P. L. François and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 22(19), 3109–3120 (1983). [CrossRef] [PubMed]
  42. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13, 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
  43. K. Saitoh, N. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14, 7342–7352 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-16-7342 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited