OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23247–23257

Angular domain fluorescence lifetime imaging: a tissue-like phantom study

Mohamadreza Najiminaini, Fartash Vasefi, Kenneth M. Tichauer, Ting-Yim Lee, Bozena Kaminska, and Jeffrey J. L. Carson  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23247-23257 (2010)
http://dx.doi.org/10.1364/OE.18.023247


View Full Text Article

Enhanced HTML    Acrobat PDF (1557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a fluorescence lifetime imaging technique employing the collimation detection capabilities of an angular filter array (AFA). The AFA accepts minimally scattered photons emitted from fluorophores up to 2 mm deep within turbid media. The technique, referred to as Angular Domain Fluorescence Lifetime Imaging (ADFLI), is described and its performance evaluated in comparison to a conventional (lens and pinhole) system. Results from a tissue-mimicking phantom demonstrated that ADFLI provides better spatial resolution and image contrast for fluorescent probes at greater depths compared to a lens and pinhole system.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3650) Medical optics and biotechnology : Lifetime-based sensing

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 10, 2010
Revised Manuscript: October 14, 2010
Manuscript Accepted: October 15, 2010
Published: October 20, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Mohamadreza Najiminaini, Fartash Vasefi, Kenneth M. Tichauer, Ting-Yim Lee, Bozena Kaminska, and Jeffrey J. L. Carson, "Angular domain fluorescence lifetime imaging: a tissue-like phantom study," Opt. Express 18, 23247-23257 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. B. Bambot, J. R. Lakowicz, and G. Rao, “Potential applications of lifetime-based, phase-modulation fluorimetry in bioprocess and clinical monitoring,” Trends Biotechnol. 13(3), 106–115 (1995). [CrossRef] [PubMed]
  2. J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18(1), 17–25 (2007). [CrossRef] [PubMed]
  3. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005). [CrossRef] [PubMed]
  4. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992). [CrossRef] [PubMed]
  5. J. R. Lakowicz and H. Szmacinski, “Fluorescence lifetime-based sensing of pH, Ca2+, K+, and glucose,” Sens. Actuators B Chem. 11(1-3), 133–143 (1993). [CrossRef]
  6. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007). [CrossRef] [PubMed]
  7. A. May, S. Bhaumik, S. S. Gambhir, C. Zhan, and S. Yazdanfar, “Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection,” J. Biomed. Opt. 14(6), 060504 (2009). [CrossRef]
  8. S. Gioux, S. J. Lomnes, H. S. Choi, and J. V. Frangioni, “Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source,” J. Biomed. Opt. 15(2), 026005 (2010). [CrossRef] [PubMed]
  9. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999). [CrossRef] [PubMed]
  10. D. W. Piston, M. S. Kirby, H. Cheng, W. J. Lederer, and W. W. Webb, “Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity,” Appl. Opt. 33(4), 662–669 (1994). [CrossRef] [PubMed]
  11. A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, (Wiley-VCH, New York, 2001) 101–125.
  12. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21(2), 158–160 (1996). [CrossRef] [PubMed]
  13. A. T. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30(24), 3347–3349 (2005). [CrossRef]
  14. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, “Time-domain fluorescence lifetime imaging applied to biological tissue,” Photochem. Photobiol. Sci. 3(8), 795–801 (2004). [CrossRef] [PubMed]
  15. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36(10), 2260–2272 (1997). [CrossRef] [PubMed]
  16. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008). [CrossRef] [PubMed]
  17. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003). [CrossRef] [PubMed]
  18. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007). [CrossRef] [PubMed]
  19. A. T. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30(24), 3347–3349 (2005). [CrossRef]
  20. F. Vasefi, M. Belton, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescence imaging for small animal research,” J. Biomed. Opt. 15(1), 016023 (2010). [CrossRef] [PubMed]
  21. F. Vasefi, B. S. Hung, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain optical imaging of turbid media using enhanced micro-tunnel filter arrays,” in Proceedings of SPIE 7369, 73691N (2009).
  22. K. M. Tichauer, M. Najiminaini, F. Vasefi, T. Lee, B. Kaminska, and J. J. L. Carson, “Improved Lifetime Analysis Using Angular-Domain Fluorescence Imaging in a Tissue-Like Phantom,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD36. [PubMed]
  23. M. Najiminaini, F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Macroscopic fluorescent lifetime imaging in turbid media using angular filter arrays,” in the 31st Annual International Conference of IEEE EMBS (Minneapolis, Minnesota, 2009), pp. 5364–5368.
  24. F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009). [CrossRef]
  25. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008). [CrossRef] [PubMed]
  26. F. Vasefi, A. Akhbardeh, M. Najiminaini, B. Kaminska, G. H. Chapman, and J. J. Carson, “Correction of Artifacts in Angular Domain Imaging,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD36.
  27. Optical properties of “Intralipid™”, an aqueous suspension of lipid droplets [Online]. Available: http://omlc.ogi.edu/spectra/intralipid/index.html .
  28. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  29. S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging,” J. Biomed. Opt. 13(6), 064038 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited