OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23302–23313

Optimized nanospherical layered alternating metal-dielectric probes for optical sensing

Anil K. Kodali, Matthew V. Schulmerich, Rohun Palekar, Xavier Llora, and Rohit Bhargava  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23302-23313 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multishell nanospheres have been proposed as a class of layered alternating metal-dielectric probes (LAMPs) that can greatly enhance sensitivity and multiplexing capabilities of optical molecular imaging . Here we theoretically demonstrate that the interplasmonic coupling within these spheres and hence their spectral responses can be tuned by a rational selection of layer thicknesses. As a proof-of-concept, layered Mie theory calculations of near- and far-field characteristics followed by a genetic algorithm-based selection are presented for gold-silica, silver-silica and copper-silica LAMPs. The results demonstrate that the optical tunability available allows for design of application (excitation wavelength)-specific probes of different sizes. The tunability further increases with number of layers and within a particular allowable probe size provides for structures with distinct resonances at longer wavelengths. The concept of scaling internal field resonances is also shown theoretically and the range over which the magnitudes can be tuned are presented.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(300.6550) Spectroscopy : Spectroscopy, visible
(350.4600) Other areas of optics : Optical engineering
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: August 13, 2010
Revised Manuscript: September 23, 2010
Manuscript Accepted: September 23, 2010
Published: October 20, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Anil K. Kodali, Matthew V. Schulmerich, Rohun Palekar, Xavier Llora, and Rohit Bhargava, "Optimized nanospherical layered alternating metal-dielectric probes for optical sensing," Opt. Express 18, 23302-23313 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008). [CrossRef] [PubMed]
  2. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  3. N. V. Tkachenko, Optical spectroscopy: methods and instrumentations, (Elsevier, Oxford, UK, 2006).
  4. V. S. Calvert, Y. Tang, V. Boveia, J. Wulfkuhle, A. S-. Geschwender, D. M. Olive, L. A. Liotta, and E. F. Petricoin III, “Development of multiplexed protein profiling and detection using near infrared detection of reverse-phase protein microarrays,” Clin. Proteomics 1, 81–89 (2004). [CrossRef]
  5. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008). [CrossRef] [PubMed]
  6. J. B. Randolph and A. S. Waggoner, “Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes,” Nucleic Acids Res. 25(14), 2923–2929 (1997). [CrossRef] [PubMed]
  7. C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem 6(5), 791–804 (2005). [CrossRef] [PubMed]
  8. T. A. Taton, “Nanostructures as tailored biological probes,” Trends Biotechnol. 20(7), 277–279 (2002). [CrossRef] [PubMed]
  9. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005). [CrossRef] [PubMed]
  10. B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4(3), 244–251 (2009). [CrossRef]
  11. L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, “Homogeneously alloyed CdSxSe1-x nanocrystals: synthesis, characterization, and composition/size-dependent band gap,” J. Am. Chem. Soc. 128(37), 12299–12306 (2006). [CrossRef] [PubMed]
  12. M. Y. Han, X. H. Gao, J. Z. Su, and S. M. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001). [CrossRef] [PubMed]
  13. Y. Xing, Q. Chaudry, C. Shen, K. Y. Kong, H. E. Zhau, L. W. Chung, J. A. Petros, R. M. O’Regan, M. V. Yezhelyev, J. W. Simons, M. D. Wang, and S. Nie, “Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry,” Nat. Protoc. 2(5), 1152–1165 (2007). [CrossRef] [PubMed]
  14. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21(1), 47–51 (2003). [CrossRef]
  15. A. M. Dennis and G. Bao, “Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes,” Nano Lett. 8(5), 1439–1445 (2008). [CrossRef] [PubMed]
  16. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007). [CrossRef]
  17. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  18. B. R. Cuenya, S. H. Baeck, T. F. Jaramillo, and E. W. McFarland, “Size- and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles,” J. Am. Chem. Soc. 125(42), 12928–12934 (2003). [CrossRef] [PubMed]
  19. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000). [CrossRef] [PubMed]
  20. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, “Direct measurement of the single-metal-cluster optical absorption,” Phys. Rev. Lett. 93(12), 127401 (2004). [CrossRef] [PubMed]
  21. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000). [CrossRef]
  22. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  23. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6-7), 485–496 (2005). [CrossRef]
  24. J. Kundu, F. Le, P. Nordlander, and N. J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452(1-3), 115–119 (2008). [CrossRef]
  25. J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles,” J. Phys. Chem. B 109(16), 7643–7648 (2005). [CrossRef]
  26. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002). [CrossRef]
  27. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998). [CrossRef]
  28. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. A 16(10), 1824–1832 (1999). [CrossRef]
  29. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4(12), 2355–2359 (2004). [CrossRef]
  30. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B 72(7), 0734051–0734054 (2005). [CrossRef]
  31. K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10(2), 024005 (2005). [CrossRef] [PubMed]
  32. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003). [CrossRef]
  33. A. K. Kodali and R. Bhargava, “Tunable multilayered nanospheres as probes for surface-enahnced Raman spectroscopy,” Proc. SPIE 7032, 70320V (2008). [CrossRef]
  34. Y. Hu, R. C. Fleming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008). [CrossRef] [PubMed]
  35. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951). [CrossRef]
  36. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  37. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4(7), 1323–1327 (2004). [CrossRef]
  38. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005). [CrossRef] [PubMed]
  39. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003). [CrossRef] [PubMed]
  40. X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006). [CrossRef]
  41. R. Bardhan, S. Mukerjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C 114(16), 7378–7383 (2010). [CrossRef]
  42. W. E. Doering and S. Nie, “Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering,” Anal. Chem. 75(22), 6171–6176 (2003). [CrossRef] [PubMed]
  43. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008). [CrossRef]
  44. B. Khlebtsov and N. Khlebtsov, “Ultrasharp light-scattering resonances of structured nanospheres: effects of size-dependent dielectric functions,” J. Biomed. Opt. 11(4), 044002 (2006). [CrossRef] [PubMed]
  45. B. R. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35(18), 3286–3296 (1996). [CrossRef] [PubMed]
  46. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19(9), 1505–1509 (1980). [CrossRef] [PubMed]
  47. E. D. Palik, ed., Handbook of optical constants of solids III, (Academic, New York, 1998).
  48. Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008). [CrossRef] [PubMed]
  49. H. Xu, X. H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93(24), 243002 (2004). [CrossRef]
  50. G. C. Schatz, and R. P. V. VanDuyne, “Electromagnetic mechanism of surface enhanced Raman spectroscopy,” in Handbook of vibrational spectroscopy, J. M. Chalmers, and P. R. Griffiths, eds. (John Wiley & Sons Ltd, Chichester, 2002).
  51. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. U.S.A. 107(31), 13620–13625 (2010). [CrossRef] [PubMed]
  52. K. Deb, Multi-objective optimization using evolutionary algorithms, (John Wiley & Sons Ltd, Chichester, 2001).
  53. W. Tan, K. Wang, X. He, X. J. Zhao, T. Drake, L. Wang, and R. P. Bagwe, “Bionanotechnology based on silica nanoparticles,” Med. Res. Rev. 24(5), 621–638 (2004). [CrossRef] [PubMed]
  54. A. K. Kodali, X. Llora, and R. Bhargava, University of Illinois at Urbana Champaign, 405 N Mathews Ave, Urbana, IL are preparing a manuscript to be called “Engineering analytical volumes in and around multilayered nanoshells,”
  55. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006). [CrossRef] [PubMed]
  56. A. K. Kodali and R. Bhargava, “Nanostructured probes to enhance optical and vibrational spectroscoping imaging for biomedical applications,” in Oxford handbook of nanoscience and technology, A. V. Narlikar, and Y. Y. Fu, eds. (Oxford University Press, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited