OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23358–23370

Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry

Jean-Daniel Deschênes, Philippe Giaccari, and Jérôme Genest  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23358-23370 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a significant advancement in the referencing technique applied to frequency comb spectrometry (cFTS) that we proposed and demonstrated recently. Based on intermediate laser oscillators, it becomes possible to access the full delay range set by the repetition rate of the frequency combs, overcoming the principal limitation observed in the method based on passive optical filters. With this new referencing technique, the maximum spectral resolution given by each comb tooth is achievable and continuous scanning will improve complex reflectometry measurements. We present a demonstration of such a high resolution cFTS system, providing a spectrometry measurement at 100 MHz of resolution (0.003 cm–1) with a spectral signal to noise ratio of 440 for a 2 seconds measurement time. The resulting spectrum is composed of 105 · 103 resolved spectral elements, each corresponding to a single pair of optical modes (one for each combs). To our knowledge, this represents the first cFTS measurement over the full spectral range of the sources in a single shot with resolved individual modes at full resolution.

© 2010 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.4050) Lasers and laser optics : Mode-locked lasers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 9, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: October 15, 2010
Published: October 20, 2010

Jean-Daniel Deschênes, Philippe Giaccarri, and Jérôme Genest, "Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry," Opt. Express 18, 23358-23370 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004). [CrossRef] [PubMed]
  2. I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs," Phys. Rev. Lett. 100, 013902 (2008). [CrossRef] [PubMed]
  3. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, "Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method," Opt. Express 16, 4347-4365 (2008). [CrossRef] [PubMed]
  4. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, "Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy," Appl. Phys. Lett. 88, 241104 (2006). [CrossRef]
  5. A. Bartels, A. Thoma, C. Janke, T. Dekorsky, A. Dreyhaupt, S. Winnerl, and M. Helm, "High-resolution THz spectrometer with kHz scan rates," Opt. Express 14, 430-437 (2006). [CrossRef] [PubMed]
  6. S. Kray, F. Spöler, M. Först, and H. Kurz, "Dual femtosecond laser multiheterodyne optical coherence tomography," Opt. Lett. 33, 2092-2094 (2008). [CrossRef] [PubMed]
  7. I. Coddington, W. C. Swann, and N. R. Newbury, "Coherent linear optical sampling at 15 bits of resolution," Opt. Lett. 34, 2153-2155 (2009). [CrossRef] [PubMed]
  8. G. Taurand, P. Giaccari, J.-D. Deschênes, and J. Genest, "Time Domain Optical Reflectometry Measurements Using a Frequency Comb Interferometer," Appl. Opt. 49, 4413-4419 (2010). [CrossRef] [PubMed]
  9. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, "Cavity-enhanced dual-comb spectroscopy," Nat. Photonics 4, 55-57 (2009). [CrossRef]
  10. N. R. Newbury, and W. C. Swann, "Low-noise fiber-laser frequency combs (Invited)," J. Opt. Soc. Am. B 24, 1756-1770 (2007). [CrossRef]
  11. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, "Linear Optical Sampling," IEEE Photon. Technol. Lett. 15, 1746-1748 (2003). [CrossRef]
  12. J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hansch, "Measuring the frequency of light with mode-locked lasers," Opt. Commun. 172, 59-68 (1999). [CrossRef]
  13. C. Turcotte, "Laser a semi-conducteurs utilise comme reference metrologique dans un spectrometre par transformee de Fourier: effet du bruit," Master’s thesis, Universite Laval, (1999).
  14. N. R. Newbury, I. Coddington, and W. C. Swann, "Sensitivity of coherent dual-comb spectroscopy," Opt. Express 18, 7929-7945 (2010). [CrossRef] [PubMed]
  15. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, "Fiber-laser frequency combs with subhertz relative linewidths," Opt. Lett. 31, 3046-3048 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited