OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23385–23393

Enhancement of light emission from nanostructured In2O3 via surface plasmons

Dongjiang Qiu, Zhengfen Wan, Xikun Cai, Zijian Yuan, Lian Hu, Bingpo Zhang, Chunfeng Cai, and Huizhen Wu  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23385-23393 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the construction of In2O3/Ag/In2O3 sandwich nanostructures and realization of effective coupling with surface plasmon (SP) modes. An enhancement of photoluminescence as large as 278-fold is achieved for the new nanostructures, while only eightfold is obtained from bilayer structures. The advancement of the nanostructures is that both the frequency of incidence photons and the in-plane wavevector of the excited SP modes along each side of the sandwiched nanometer metal layer are identical, thus the momenta mismatch between two SP modes which inevitably occurs in commonly used metal/dielectric bilayer structures is no longer a problem. The fulfillment of the cross coupling and resonance conditions of the two SP modes leads to the tremendous amplification of light emission. Such sandwich nanostructures can be readily extended to other dielectric/metal/dielectric nanomaterial combinations and identified as technologically useful for SP mediated light emitting devices.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: July 9, 2010
Revised Manuscript: September 4, 2010
Manuscript Accepted: September 9, 2010
Published: October 21, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Dongjiang Qiu, Zhengfen Wan, Xikun Cai, Zijian Yuan, Lian Hu, Bingpo Zhang, Chunfeng Cai, and Huizhen Wu, "Enhancement of light emission from nanostructured In2O3 via surface plasmons," Opt. Express 18, 23385-23393 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, “Enhanced gas sensing of Au nanocluster-doped or –coated zinc oxide thin films,” J. Appl. Phys. 102(8), 083103 (2007). [CrossRef]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  5. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef]
  6. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000). [CrossRef]
  7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  9. D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007). [CrossRef]
  10. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002). [CrossRef]
  11. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182–184 (2004). [CrossRef]
  12. D. K. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80(20), 3679–3681 (2002). [CrossRef]
  13. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  14. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008). [CrossRef]
  15. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005). [CrossRef]
  16. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D 41(20), 205101 (2008). [CrossRef]
  17. K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, L. Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, “Giant enhancement of top emission from ZnO thin film by nanopatterned Pt,” Appl. Phys. Lett. 94(15), 151102 (2009). [CrossRef]
  18. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingo-lani, and R. Rinaldi, “Electronic structure of indium-tin-oxide flms fabricated by reactive electron-beam deposition,” Phys. Rev. B 72(8), 085437 (2005). [CrossRef]
  19. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, “Large-scale growth of In2O3 nanowires and their optical properties,” Nanotechnology 15(5), 596–600 (2004). [CrossRef]
  20. R. L. Weiher, “Electrical properties of single crystals of indium oxide,” J. Appl. Phys. 33(9), 2834–2839 (1962). [CrossRef]
  21. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films – basic optical-properties and applications to energy-efficient windows,” J. Appl. Phys. 60(11), R123–R159 (1986). [CrossRef]
  22. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000). [CrossRef]
  23. S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D. B. Janes, and T. J. Marks, “Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry,” Nano Lett. 8(4), 997–1004 (2008). [CrossRef]
  24. H. Cao, X. Qiu, Y. Liang, Q. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003). [CrossRef]
  25. W. S. Seo, H. H. Jo, K. Lee, and J. T. Park, “Preparation and optical properties of highly crystalline, colloidal, and size controlled indium oxide nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 795–797 (2003). [CrossRef]
  26. H. Zhou, W. Cai, and L. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999). [CrossRef]
  27. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, “Catalytic Growth of Semiconducting In2O3 Nanofibers,” Adv. Mater. (Deerfield Beach Fla.) 13(17), 1330–1333 (2001). [CrossRef]
  28. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, “Enhancement of band gap emission stimulated by defect loss,” Opt. Express 14(6), 2372–2379 (2006). [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of solid, (Academic, London, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited