OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23394–23405

Recovery of reflection spectra in a multispectral imaging system with light emitting diodes

Laure Fauch, Ervin Nippolainen, Victor Teplov, and Alexei A. Kamshilin  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23394-23405 (2010)
http://dx.doi.org/10.1364/OE.18.023394


View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Performance of recently proposed multispectral imaging system for fast acquisition of two dimensional distribution of reflectance spectrum is experimentally studied. The system operation is based on a subspace vector model in which any reflectance spectrum is described in the compressed form as a linear combination of few spectral functions. A key element of the proposed system is a light source which includes a set of light-emitting diodes with different central wavelengths. The light source provides illumination of the object by fast-switchable sequences of spectral bands whose energy distributions are proportional to mutually orthogonal spectral functions (calculated in-advance). Object illumination is synchronized with a monochrome digital camera. The system allows us fast acquisition of reflectance spectra in a compressed form with high spatial resolution. A model of the system calibration by using standard white matte sample is proposed. Reconstruction of the reflectance spectrum from the compressed data collected after illumination of selected color samples from the Munsell book by 7 mutually orthogonal spectral functions is demonstrated. Parameters of the system, which affect the accuracy of the spectrum reconstruction, are analyzed and discussed.

© 2010 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(300.6550) Spectroscopy : Spectroscopy, visible
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 16, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 11, 2010
Published: October 21, 2010

Citation
Laure Fauch, Ervin Nippolainen, Victor Teplov, and Alexei A. Kamshilin, "Recovery of reflection spectra in a multispectral imaging system with light emitting diodes," Opt. Express 18, 23394-23405 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009). [CrossRef] [PubMed]
  2. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  3. S. A. Sheth, N. Prakash, M. Guiou, and A. W. Toga, “Validation and visualization of two-dimensional optical spectroscopic imaging of cerebral hemodynamics,” Neuroimage 47(Suppl 2), T36–T43 (2009). [CrossRef]
  4. D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt. 13(2), 024019 (2008). [CrossRef] [PubMed]
  5. V. C. Paquit, K. W. Tobin, J. R. Price, and F. Mèriaudeau, “3D and multispectral imaging for subcutaneous veins detection,” Opt. Express 17(14), 11360–11365 (2009). [CrossRef] [PubMed]
  6. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18(4), 3244–3257 (2010). [CrossRef] [PubMed]
  7. L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15(1), 010502 (2010). [CrossRef] [PubMed]
  8. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt. 46(10), 1896–1910 (2007). [CrossRef] [PubMed]
  9. E. M. Attas, M. G. Sowa, T. B. Posthumus, B. J. Schattka, H. H. Mantsch, and S. L. Zhang, “Near-IR spectroscopic imaging for skin hydration: the long and the short of it,” Biopolymers 67(2), 96–106 (2002). [CrossRef] [PubMed]
  10. J. Blasco, N. Aleixos, J. Gómez, and E. Moltó, “Citrus sorting by identification of the most common defects using multispectral computer vision,” J. Food Eng. 83(3), 384–393 (2007). [CrossRef]
  11. R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng. 46(12), 123201 (2007). [CrossRef]
  12. J. Qiao, M. O. Ngadi, N. Wang, C. Gariépy, and S. O. Prasher, “Pork quality and marbling level assessment using a hyperspectral imaging system,” J. Food Eng. 83(1), 10–16 (2007). [CrossRef]
  13. A. A. Gowen, M. Taghizadeh, and C. P. O'Donnell, “Identification of mushrooms subjected to freeze damage using hyperspectral imaging,” J. Food Eng. 93(1), 7–12 (2009). [CrossRef]
  14. R. Leitner, H. Mairer, and A. Kercek, “Real-time classification of polymers with NIR spectral imaging and blob analysis,” Real-Time Imag. 9(4), 245–251 (2003). [CrossRef]
  15. P. B. García-Allende, O. M. Conde, A. M. Cubillas, C. Jáuregui, and J. M. López-Higuera, “New raw material discrimination system based on a spatial optical spectroscopy technique,” Sens. Actuators, A 135, 605–612 (2007). [CrossRef]
  16. P. Tatzer, M. Wolf, and T. Panner, “Industrial application for inline material sorting using hyperspectral imaging in the NIR range,” Real-Time Imag. 11(2), 99–107 (2005). [CrossRef]
  17. C. Bonifazzi, P. Carcagni, R. Fontana, M. Greco, M. Mastroiani, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A, Pure Appl. Opt. 10(6), 064011 (2008). [CrossRef]
  18. D. Comelli, G. Valentini, A. Nevin, A. Farina, L. Toniolo, and R. Cubeddu, “A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces,” Rev. Sci. Instrum. 79(8), 086112 (2008). [CrossRef] [PubMed]
  19. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [CrossRef] [PubMed]
  20. A. A. Kamshilin and E. Nippolainen, “Chromatic discrimination by use of computer controlled set of light-emitting diodes,” Opt. Express 15(23), 15093–15100 (2007). [CrossRef] [PubMed]
  21. L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007). [CrossRef]
  22. E. Nippolainen, T. Ervasti, L. Fauch, S. V. Miridonov, J. Ketolainen, and A. A. Kamshilin, “Fast noncontact measurements of tablet dye concentration,” Opt. Express 18(15), 15624–15634 (2010). [CrossRef] [PubMed]
  23. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
  24. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3(10), 1673–1683 (1986). [CrossRef] [PubMed]
  25. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6(2), 318–322 (1989). [CrossRef]
  26. T. Jaaskelainen, J. P. S. Parkkinen, and S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7(4), 725–730 (1990). [CrossRef]
  27. N. Hayasaka, S. Toyooka, and T. Jaaskelainen, “Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition,” Opt. Commun. 119(5-6), 643–651 (1995). [CrossRef]
  28. R. Piché, “Nonnegative color spectrum analysis filters from principal component analysis characteristic spectra,” J. Opt. Soc. Am. A 19(10), 1946–1950 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited