OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23406–23412

InGaN light emitting solar cells with a roughened N-face GaN surface through a laser decomposition process

Kuei-Ting Chen, Wan-Chun Huang, Tsung-Han Hsieh, Chang-Hua Hsieh, and Chia-Feng Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23406-23412 (2010)
http://dx.doi.org/10.1364/OE.18.023406


View Full Text Article

Enhanced HTML    Acrobat PDF (1240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

InGaN-based light-emitting solar cell (LESC) structure with an inverted pyramidal structure at GaN/sapphire interface was fabricated through a laser decomposition process and a wet crystallographic etching process. The highest light output power of the laser-treated LESC structure, with a 56% backside roughened-area ratio, had a 75% enhancement compared to the conventional device at a 20 mA operating current. By increasing the backside roughened area, the cutoff wavelength of the transmittance spectra and the wavelength of the peak photovoltaic efficiency had a redshift phenomenon that could be caused by increasing the light absorption at InGaN active layer.

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: July 22, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: August 31, 2010
Published: October 21, 2010

Citation
Kuei-Ting Chen, Wan-Chun Huang, Tsung-Han Hsieh, Chang-Hua Hsieh, and Chia-Feng Lin, "InGaN light emitting solar cells with a roughened N-face GaN surface through a laser decomposition process," Opt. Express 18, 23406-23412 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23406


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN–GaN light-emitting diodes,” IEEE Photon. Technol. Lett. 18(19), 2029–2031 (2006). [CrossRef]
  2. J. H. Cheng, Y. S. Wu, W. C. Liao, and B. W. Lin, “Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire,” Appl. Phys. Lett. 96(5), 051109 (2010). [CrossRef]
  3. C. C. Kao, Y. K. Su, C. L. Lin, and J. J. Chen, “The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates,” Appl. Phys. Lett. 97(2), 023111 (2010). [CrossRef]
  4. S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800°C grown p-AlInGaN–GaN double-cap layers,” IEEE Photon. Technol. Lett. 16(6), 1447–1449 (2004). [CrossRef]
  5. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C.-H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 95(22), 221110 (2009). [CrossRef]
  6. M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, “High efficiency light emitting diode with anisotropically etched GaN-sapphire interface,” Appl. Phys. Lett. 95(4), 041109 (2009). [CrossRef]
  7. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]
  8. D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett. 73(18), 2654–2656 (1998). [CrossRef]
  9. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008). [CrossRef]
  10. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009). [CrossRef]
  11. K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010). [CrossRef]
  12. I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010). [CrossRef]
  13. R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009). [CrossRef]
  14. Y. Jung, K. H. Baik, F. Ren, S. J. Pearton, and J. Kim, “Effects of Photoelectrochemical Etching of N-polar and Ga-polar gallium nitride on sapphire substrates,” J. Electrochem. Soc. 157(6), H676– H678 (2010). [CrossRef]
  15. C. F. Lin, C. M. Lin, K. T. Chen, W. C. Huang, M. S. Lin, J. J. Dai, R. H. Jiang, Y. C. Huang, and C. Y. Chang, “Blue light-emitting diodes with a roughened backside fabricated by wet etching,” Appl. Phys. Lett. 95(20), 201102 (2009). [CrossRef]
  16. H. M. Ng, N. G. Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching,” J. Appl. Phys. 94(1), 650–653 (2003). [CrossRef]
  17. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited