OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23466–23471

Slot waveguide-based splitters for broadband terahertz radiation

Shashank Pandey, Gagan Kumar, and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23466-23471 (2010)
http://dx.doi.org/10.1364/OE.18.023466


View Full Text Article

Acrobat PDF (820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a slot waveguide-based splitter for broadband terahertz (THz) radiation using a T-shaped waveguide structure. The structure consists of a fixed-width input waveguide and variable-width output waveguides. We experimentally measure and numerically simulate the THz transmission and reflection properties as a function of the output waveguide width and show that a transmission line model can effectively describe the observations. Based on the high degree of agreement between the experimental results, numerical simulations and the model, we infer the optimal waveguide parameters. The device structure offers new possibilities in designing compact THz devices.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Integrated Optics

History
Original Manuscript: September 15, 2010
Revised Manuscript: October 19, 2010
Manuscript Accepted: October 19, 2010
Published: October 22, 2010

Citation
Shashank Pandey, Gagan Kumar, and Ajay Nahata, "Slot waveguide-based splitters for broadband terahertz radiation," Opt. Express 18, 23466-23471 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23466


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
  2. R. A. Soref and J. P. Lorenzo, “All silicon active and passive waveguide for λ= 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986). [CrossRef]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996). [CrossRef] [PubMed]
  4. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  5. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef] [PubMed]
  6. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007). [CrossRef]
  7. M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008). [CrossRef]
  8. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  9. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  10. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010). [CrossRef] [PubMed]
  11. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  13. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  14. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009). [CrossRef] [PubMed]
  15. A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010). [CrossRef] [PubMed]
  16. N. Marcuvitz, Waveguide Handbook (New York: McGraw-Hill, 1951).
  17. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994).
  18. T. H. Lee, Planar Microwave Engineering: A Practical Guide to Theory, Measurement, And Circuits (Cambridge University Press, Cambridge, 2004)
  19. A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23(11), 867–869 (1998). [CrossRef] [PubMed]
  20. A. Nahata, “Nonlinear optical generation and detection of ultrashort electrical pulses in transmission lines,” Opt. Lett. 26(6), 385–387 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited