OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23576–23583

Design of vertical Ge quantum well asymmetric Fabry-Perot modulator without DBR

Yi-Peng Wei and Yu-Hsuan Kuo  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23576-23583 (2010)
http://dx.doi.org/10.1364/OE.18.023576


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a vertical Ge quantum well (QW) asymmetric Fabry-Perot modulator design and integration scheme without distributed Bragg reflector (DBR). The field-dependent excitonic absorption and the modulator performance are calculated, showing the wide (20-nm-thick) well design gives a large absorption reduction for the normally-off modulator operation. For a 47 QW modulator, the theoretical contrast ratio exceeds 40 dB at 1 V and increases to 52.3 dB at 4 V bias with a 12.3-dB insertion loss and over-9-nm optical bandwidth (contrast > 3dB). This robust DBR-free design can enable high-contrast-ratio Ge QW modulators.

© 2010 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5750) Optical devices : Resonators
(230.4205) Optical devices : Multiple quantum well (MQW) modulators

ToC Category:
Optical Devices

History
Original Manuscript: September 8, 2010
Revised Manuscript: October 20, 2010
Manuscript Accepted: October 21, 2010
Published: October 26, 2010

Citation
Yi-Peng Wei and Yu-Hsuan Kuo, "Design of vertical Ge quantum well asymmetric Fabry-Perot modulator without DBR," Opt. Express 18, 23576-23583 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect,” Phys. Rev. Lett. 53(22), 2173–2176 (1984). [CrossRef]
  2. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric filed dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32(2), 1043–1060 (1985). [CrossRef]
  3. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  4. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulator,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1503–1513 (2006). [CrossRef]
  5. S. Tsujino, H. Sigg, G. Mussler, D. Chrastina, and H. von Känel, “Photocurrent and transmission spectroscopy of direct-gap interband transitions in Ge/SiGe quantum wells,” Appl. Phys. Lett. 89(26), 262119 (2006). [CrossRef]
  6. R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1082–1089 (2008). [CrossRef]
  7. M. Virgilio and G. Grosso, “Quantum-confined Stark effect in Ge/SiGe quantum wells: a tight-binding description,” Phys. Rev. B 77(16), 165315 (2008). [CrossRef]
  8. Y.-H. Kuo and Y.-S. Li, “Direct-gap exciton and optical absorption in the Ge/SiGe quantum well system,” Appl. Phys. Lett. 94(12), 121101 (2009). [CrossRef]
  9. Y.-H. Kuo and Y.-S. Li, “Variational calculation for the direct-gap exciton in the Ge quantum well systems,” Phys. Rev. B 79(24), 245328 (2009). [CrossRef]
  10. M. Virgilio, M. Bonfanti, D. Chrastina, A. Neels, G. Isella, E. Grilli, M. Guzzi, G. Grosso, H. Sigg, and H. von Känel, “Polarization-dependent absorption in Ge/SiGe multiple quantum wells: theory and experiment,” Phys. Rev. B 79(7), 075323 (2009). [CrossRef]
  11. P. Moontragoon, N. Vukmirovic, and P. Harrison, “SnGe asymmetric quantum well electroabsorption modulators for long-wavelength silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 100–105 (2010). [CrossRef]
  12. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007). [CrossRef] [PubMed]
  13. J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett. 44(1), 49 (2008). [CrossRef]
  14. Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M. R. T. Tan, T. I. Kamins, T. J. Ochalski, G. Huyet, and J. S. Harris., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si,” IEEE J. Sel. Top. Quantum Electron. 16(1), 85–92 (2010). [CrossRef]
  15. E. H. Edwards, R. M. Audet, S. A. Claussen, R. K. Schaevitz, E. Tasurek, S. Ren, O. I. Dosunmu, M. S. Unlu, and D. A. B. Miller, “Si-Ge surface-normal asymmetric Fabry-Perot electroabsorption modulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuA5.
  16. O. Fidaner, A. K. Okyay, J. E. Roth, R. K. Schaevitz, Y.-H. Kuo, K. C. Saraswat, J. S. Harris, and D. A. B. Miller, “Ge-SiGe quantum-well waveguide photodetectors on silicon for the near-infrared,” IEEE Photon. Technol. Lett. 19(20), 1631–1633 (2007). [CrossRef]
  17. M. Whitehead and G. Parry, “High-contrast reflection modulation at normal incidence in asymmetric multiple quantum well Fabry-Perot structure,” Electron. Lett. 25(9), 566–568 (1989). [CrossRef]
  18. Y.-H. Kuo, Y.-A. Huang, and T.-L. Chen, “A vertical germanium thermooptic modulator for optical interconnects,” IEEE Photon. Technol. Lett. 21(4), 245–247 (2009). [CrossRef]
  19. J. A. Burns, B. F. Aull, C. K. Chen, C.-L. Chen, C. L. Keast, J. M. Knecht, J. M. Knecht, V. Suntharalingam, K. Warner, P. W. Eyatt, and D.-R. W. Yost, “A wafer-scale 3-D circuit integration technology,” IEEE Trans. Electron. Dev. 53(10), 2507–2516 (2006). [CrossRef]
  20. M. Cardona and F. H. Pollak, “Energy-band structure of germanium and silicon: the k.p method,” Phys. Rev. 142(2), 530–543 (1966). [CrossRef]
  21. S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si(001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000). [CrossRef]
  22. S.-L. Chuang, Physics of Optoelectronic Devices (Wiley, 1994), Chap. 13.
  23. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003). [CrossRef]
  24. P. Lefebvre, P. Christol, and H. Mathieu, “Unified formulation of excitonic absorption spectra of semiconductor quantum wells, superlattices, and quantum wires,” Phys. Rev. B Condens. Matter 48(23), 17308–17315 (1993). [CrossRef] [PubMed]
  25. X.-F. He, “Excitons in anisotropic solids: The model of fractional-dimensional space,” Phys. Rev. B Condens. Matter 43(3), 2063–2069 (1991). [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]
  28. S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter 38(18), 12966–12976 (1988). [CrossRef] [PubMed]
  29. R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited