OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23598–23607

Silicon photonics manufacturing

William A. Zortman, Douglas C. Trotter, and Michael R. Watts  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23598-23607 (2010)
http://dx.doi.org/10.1364/OE.18.023598


View Full Text Article

Enhanced HTML    Acrobat PDF (1206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system’s frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1THz across a wafer and 105GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.6000) Materials : Semiconductor materials
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Integrated Optics

History
Original Manuscript: September 21, 2010
Manuscript Accepted: October 19, 2010
Published: October 26, 2010

Citation
William A. Zortman, Douglas C. Trotter, and Michael R. Watts, "Silicon photonics manufacturing," Opt. Express 18, 23598-23607 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  2. P. M. Kogge, ed., “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems,” Univ. of Notre Dame, CSE Dept. Tech. Report TR-2008–13, Sept. 28, 2008.
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  4. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]
  5. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,” (CLEO) CThJ4 San Jose, Ca (2010).
  6. M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second-Order Silicon Microdisk Switches,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP14.
  7. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010). [CrossRef]
  8. A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, M. Lipson, K. Bergman, “Broadband CMOS-Compatible Silicon Photonic Electro-Optic Switch,” CLEO CPDA11 (2010).
  9. A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D. Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H. Rong, Y. H. Kuo, S. Xu, D. Alduino, J. Tseng, H. F. Liu, and M. Paniccia, “Integrated Silicon Photonics for Optical Networks,” J. Opt. Netw. 6(1Issue 1), 25–47 (2007). [CrossRef]
  10. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” CLEO CPDB10 (2009).
  11. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.
  12. P. Dong, S. Liao, D. Feng, H. Liang, R. Shafiiha, N. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Tunable High Speed Silicon Microring Modulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ5.
  13. W. A. Zortman, M. R. Watts, and D. C. Trotter, “Determination of Wafer and Process Induced Resonant Frequency Variation in Silicon Microdisk-Resonators,” in Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMC5.
  14. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Proceedings of IEEE conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 4–6, 2008.
  15. M. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” Integrated Photonics Research, Washington, DC, (2003)
  16. R. E. Walpole, and R. H. Meyers, Probability and Statistics for Engineers and Scientists, (Macmillan, New York, 1989)
  17. Soitec products page: http://www.soitec.com/en/products/soi-products.php
  18. International Technology Roadmap for Semiconductors 2009: http://www.itrs.net/Links/2009ITRS/Home2009.htm
  19. D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30(17), 2251–2253 (2005). [CrossRef] [PubMed]
  20. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010). [CrossRef] [PubMed]
  21. Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008). [CrossRef]
  22. S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited