OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23676–23690

Compressed sensing in diffuse optical tomography

Mehmet Süzen, Alexia Giannoula, and Turgut Durduran  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23676-23690 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical tomography (DOT) allows tomographic (3D), non-invasive reconstructions of tissue optical properties for biomedical applications. Severe under-sampling is a common problem in DOT which leads to image artifacts. A large number of measurements is needed in order to minimize these artifacts. In this work, we introduce a compressed sensing (CS) framework for DOT which enables improved reconstructions with under-sampled data. The CS framework uses a sparsifying basis, 1-regularization and random sampling to reduce the number of measurements that are needed to achieve a certain accuracy. We demonstrate the utility of the CS framework using numerical simulations. The CS results show improved DOT results in comparison to “traditional” linear reconstruction methods based on singular-value decomposition (SVD) with 2-regularization and with regular and random sampling. Furthermore, CS is shown to be more robust against the reduction of measurements in comparison to the other methods. Potential benefits and shortcomings of the CS approach in the context of DOT are discussed.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 30, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: October 15, 2010
Published: October 27, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Mehmet Süzen, Alexia Giannoula, and Turgut Durduran, "Compressed sensing in diffuse optical tomography," Opt. Express 18, 23676-23690 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008). [CrossRef]
  2. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010). [CrossRef]
  3. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, 1–43 (2005). [CrossRef]
  5. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009). [CrossRef]
  6. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000). [CrossRef] [PubMed]
  7. S. R. Arridge and M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998). [CrossRef] [PubMed]
  8. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001). [CrossRef]
  9. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235 (2003). [CrossRef] [PubMed]
  10. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950­–2961 (1999). [CrossRef]
  11. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207 (2006). [CrossRef]
  12. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  13. C. E. Shannon, “Communication in the presence of noise,” in Proceedings of the IRE 37, 10–21 (1949). [CrossRef]
  14. H. Nyquist, “Certain topics in telegraph transmission theory,” in Transactions of the American Institute of Electrical Engineers 47, 617–644 (1928). [CrossRef]
  15. D. L. Donoho, “For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution,” Commun. Pure Appl. Math. 59, 797–829 (2006). [CrossRef]
  16. D. Needell, and R. Vershynin, “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,” Found. Comput. Math. 9, 317–334 (2009). [CrossRef]
  17. R. Baraniuk, “Compressive sensing,” Lecture notes in IEEE Signal Process. Mag. 24, 118–120 (2007). [CrossRef]
  18. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53, 4655 (2007). [CrossRef]
  19. D. Needell and J. A. Tropp, “CoSaMP: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009). [CrossRef]
  20. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 1182–1195 (2007). [CrossRef] [PubMed]
  21. H. Yu and G. Wang, “Compressed sensing based interior tomography,” Phys. Med. Biol. 54, 2791–2805 (2009). [CrossRef] [PubMed]
  22. J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imaging 28, 585–594 (2008). [CrossRef]
  23. Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010). [CrossRef] [PubMed]
  24. D. Liang, H. F. Zhang, and L. Ying, “Compressed-sensing photoacoustic imaging based on random optical illumination,” Int. J. Funct. Inform. Personalised Med. 2, 394–406 (2009). [CrossRef]
  25. G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (piccs): a method to accurately reconstruct dynamic ct images from highly undersampled projection data sets,” Med. Phys. 35, 660 (2008). [CrossRef] [PubMed]
  26. Z. Xu and Y. L. Edmund, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646 (2010). [CrossRef]
  27. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef] [PubMed]
  28. J. C. Ye, S. Y. Lee, and Y. Bresler, “Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation,” in IEEE Fifth International Symposium on Biomedical Imaging: From Nano to Macro, (IEEE, 2008), pp. 1621–1624.
  29. N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13707 (2007). [CrossRef] [PubMed]
  30. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007). [CrossRef] [PubMed]
  31. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization,” Opt. Express 18, 1854–1871 (2010). [CrossRef] [PubMed]
  32. M. Süzen, A. Giannoula, P. Zirak, N. Oliverio, U. M. Weigel, P. Farzam, and T. Durduran, “Sparse image reconstruction in diffuse optical tomography: an application of compressed sensing,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuE6. http://www.opticsinfobase.org/abstract.cfm?URI=BIOMED-2010-BSuE6.
  33. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, (IEEE Service Center, 1988).
  34. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).
  35. G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numerische Mathematik 14, 403–420 (1970). [CrossRef]
  36. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the l-curve,” SIAM Rev. 34, 561–580 (1992). [CrossRef]
  37. E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969–985 (2007). [CrossRef]
  38. S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007).
  39. J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory 50, 2231–2242 (2004). [CrossRef]
  40. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag. 25, 72–82 (2008). [CrossRef]
  41. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A. 91, 4887 (1994). [CrossRef] [PubMed]
  42. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, 137–143 (2009). [CrossRef]
  43. H. Ponnekanti, J. Ophir, and Y. Huang, “Fundamental mechanical limitations on the visualization of elasticity contrast in elastography,” Ultrasound Med. Biol. 21, 533–543 (1995). [CrossRef]
  44. X. M. Song, B. W. Pogue, S. D. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt. 43, 1053–1062 (2004). [CrossRef] [PubMed]
  45. R. D. C. Team, R: A Language and Environment for Statistical Computing, ISBN 3–900051–07–0 (2009). http://www.r-project.org.
  46. M. Süzen and T. Durduran, “Basic dot,” GNU R Simulation Software for Diffuse Optical Tomography and Compressive Sampling (2009,2010).
  47. E. van den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,” SIAM J. Sci. Comput. (USA) 31, 890–912 (2008). [CrossRef]
  48. R. A. DeVore, “Deterministic constructions of compressed sensing matrices,” J. Complexity 23, 918–925 (2007). [CrossRef]
  49. E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted l1 minimization,” J. Fourier Anal. Appl. 14, 877–905 (2008). [CrossRef]
  50. J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization,” IEEE Trans. Image Process. 18, 1395–1408 (2009). [CrossRef]
  51. U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dynamic MRI,” Magn. Reson. Med. 59, 365–373 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited