OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23711–23726

Numerical investigation of mode characteristics of nanoscale surface plasmon-polaritons using a pseudospectral scheme

Chia-Chien Huang  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23711-23726 (2010)
http://dx.doi.org/10.1364/OE.18.023711


View Full Text Article

Enhanced HTML    Acrobat PDF (1640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study uses a full vector pseudospectral scheme in the frequency domain to investigate the mode characteristics of surface plasmon-polariton (SPP) waveguides. The wave equations solved in this study are based on the transverse magnetic field components, and thus the spurious modes are removed due to the constraint of divergence-free magnetic vector. The waveguide dimension dependences on the mode confinement and propagation length of the dielectric-loaded surface plasmon-polariton waveguide (DLSPPW) are extensively studied and characterized. The numerical results of the DLSPPW show that the proposed scheme is highly efficient and yields accurate complex effective indices while requiring much less memory than the commonly used finite element method. This study also analyzes the propagation characteristics and figures of merit of an inverted metal slot waveguide (IMSW) in detail. The IMSW achieves a propagation loss an order of magnitude lower than nanoparticle chains with comparable degrees of lateral confinement.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 3, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 19, 2010
Published: October 27, 2010

Citation
Chia-Chien Huang, "Numerical investigation of mode characteristics of nanoscale surface plasmon-polaritons using a pseudospectral scheme," Opt. Express 18, 23711-23726 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23711


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]
  2. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15(8), 4474–4484 (2007). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. H. Raether, Surface plasmons on smooth and rough surfaces and on grating, Ch. 2, (Springer Verlag, New York. 1988).
  5. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  6. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003). [CrossRef]
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  8. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  10. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [CrossRef]
  11. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104–1 (2006). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  13. S. J. Al-Bader, “Optical transmission on metallic wires-fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004). [CrossRef]
  14. A. Hosseini, A. Nieuwoudt, and Y. Massoud, “Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi,” Opt. Express 14(16), 7291–7298 (2006). [CrossRef] [PubMed]
  15. G. Veronis and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  16. A. Hosseini, A. Nieuwoudt, and Y. Massoud, “On the design of dielectric strip plasmonic structures for subwavelength waveguiding applications,” IEEE Trans. NanoTechnol. 7(2), 189–196 (2008). [CrossRef]
  17. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  18. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17(5), 3610–3618 (2009). [CrossRef] [PubMed]
  19. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  20. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010). [CrossRef] [PubMed]
  21. Y. Xiao-Li, “Light guiding in a slot waveguide that includes an additional confining core region,” Opt. Express 18(6), 6408–6416 (2010). [CrossRef] [PubMed]
  22. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  23. S. H. Chang, T. C. Chiu, and C. Y. Tai, “Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides,” Opt. Express 15(4), 1755–1761 (2007). [CrossRef] [PubMed]
  24. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Surface plasmon coplanar waveguides: mode characteristics and mode conversion losses,” IEEE Photon. Technol. Lett. 21(10), 630–632 (2009). [CrossRef]
  25. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009). [CrossRef]
  26. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  27. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7(10), 329–335 (2000). [CrossRef] [PubMed]
  28. T. T. Minh, K. Tanaka, and M. Tanaka, “Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines,” Opt. Express 16(13), 9378–9390 (2008). [CrossRef] [PubMed]
  29. K. Tanaka, T. T. Minh, and M. Tanaka, “Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines,” Opt. Express 17(2), 1078–1092 (2009). [CrossRef] [PubMed]
  30. S. Massenot, J. C. Weeber, A. Bouhelier, G. Colas des Francs, J. Grandidier, L. Markey, and A. Dereux, “Differential method for modeling dielectric-loaded surface plasmon polariton waveguides,” Opt. Express 16(22), 17599–17608 (2008). [CrossRef] [PubMed]
  31. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  32. J. Shibayama, T. Yamazaki, J. Yamauchi, and H. Nakano, “Eigenmode analysis of a light-guiding metal line loaded on a dielectric substrate using the imaginary-distance beam propagation method,” J. Lightwave Technol. 23(3), 1533–1539 (2005). [CrossRef]
  33. G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: a mode solver based on density of states formulation,” Phys. Rev. B 80(11), 115419 (2009). [CrossRef]
  34. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, (Springer Verlag, New York. 1988).
  35. J. P. Boyd, Chebyshev and Fourier spectral methods. Lecture Notes in Engineering, New York: (Springer, Verlag, 2nd Edition, 2000).
  36. C. C. Huang, C. C. Huang, and J. Y. Yang, “An efficient method for computing optical waveguides with discontinuous refractive index profiles using spectral collocation method with domain decomposition,” J. Lightwave Technol. 21(10), 2284–2296 (2003). [CrossRef]
  37. C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11(2), 457–465 (2005). [CrossRef]
  38. C. C. Huang, “Simulation of optical waveguides by novel full-vectorial pseudospectral-based imaginary-distance beam propagation method,” Opt. Express 16(22), 17915–17934 (2008). [CrossRef] [PubMed]
  39. C. C. Huang, “Improved pseudospectral mode solver by prolate spheroidal wave functions for optical waveguides with step-index,” J. Lightwave Technol. 27(5), 597–605 (2009). [CrossRef]
  40. B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microw. Theory Tech. 32(8), 922–928 (1984). [CrossRef]
  41. A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22(11), 569–570 (1986). [CrossRef]
  42. J. Grandidier, S. Massenot, G. C. Francs, A. Bouhelier, J. C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008). [CrossRef]
  43. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  44. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  45. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006). [CrossRef]
  46. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  47. G. H. Yuan, P. Wang, Y. H. Lu, and H. Ming, “Multimode interference splitter based on dielectric-loaded surface plasmon polariton waveguides,” Opt. Express 17(15), 12594–12600 (2009). [CrossRef] [PubMed]
  48. A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283(8), 1581–1584 (2010). [CrossRef]
  49. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  50. E. D. Palik, Handbook of optical constant of solids II (Academic Press, New York. 1998).
  51. R. B. Lehoucq and D. C. Sorensen, “Deflation techniques for an implicitly re-started Arnoldi iteration,” SIAM J. Matrix Anal. Appl. 17(4), 789–821 (1996). [CrossRef]
  52. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited