OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23763–23775

Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5

Hayato Goto, Satoshi Nakamura, and Kouichi Ichimura  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23763-23775 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (773 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an experimental method with which all the following quantities can be determined separately: the intracavity loss and individual cavity-mirror transmittances of a monolithic Fabry-Perot cavity and furthermore the coupling efficiency between the cavity mode and the incident light. It is notable that the modified version of this method can also be applied to whispering-gallery-mode cavities. Using this method, we measured the intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5 at room temperature. The knowledge of the intracavity losses is very important for applications of such cavities, e.g., to quantum information technologies. It turns out that fairly high losses (about 0.1%) exist even for a sample with extremely low dopant concentration (2 × 10−5 at. %). The experimental results also indicate that the loss may be mainly due to the bulk loss of Y2SiO5 crystal. The bulk loss is estimated to be 7 × 10−4 cm−1 (0.003 dB/cm) or lower.

© 2010 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.5690) Materials : Rare-earth-doped materials
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 7, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 17, 2010
Published: October 27, 2010

Hayato Goto, Satoshi Nakamura, and Kouichi Ichimura, "Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5," Opt. Express 18, 23763-23775 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Spectroscopy of Solids Containing Rare-Earth Ions, edited by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland, Amsterdam, 1987).
  2. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002). [CrossRef]
  3. R. M. Macfarlane, "High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective," J. Lumin. 100, 1-20 (2002) (and references therein). [CrossRef]
  4. E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005). [CrossRef] [PubMed]
  5. S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009). [CrossRef]
  6. K. Ichimura, "A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode," Opt. Commun. 196, 119-125 (2001). [CrossRef]
  7. M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001). [CrossRef]
  8. N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002). [CrossRef]
  9. J. Wesenberg, and K. Mølmer, "Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals," Phys. Rev. A 68, 012320 (2003). [CrossRef]
  10. I. Roos, and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004). [CrossRef]
  11. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004). [CrossRef]
  12. Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004). [CrossRef]
  13. J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007). [CrossRef]
  14. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, "Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal," Opt. Lett. 22, 1138-1140 (1997). [CrossRef] [PubMed]
  15. K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998). [CrossRef]
  16. E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010). [CrossRef]
  17. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  18. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005). [CrossRef] [PubMed]
  19. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010). [CrossRef] [PubMed]
  20. M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010). [CrossRef] [PubMed]
  21. H. Goto, and K. Ichimura, "Population transfer via stimulated Raman adiabatic passage in a solid," Phys. Rev. A 74, 053410 (2006). [CrossRef]
  22. H. Goto, and K. Ichimura, "Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal," Phys. Rev. A 75, 033404 (2007). [CrossRef]
  23. J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007). [CrossRef] [PubMed]
  24. A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008). [CrossRef]
  25. J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004). [CrossRef] [PubMed]
  26. C. Q. Electrodynamics, edited by P. R. Berman, Adv. At. Mol. Opt. Phys. Suppl. 2 (Academic Press, San Diego, 1994).
  27. D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009). [CrossRef]
  28. C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000). [CrossRef] [PubMed]
  29. C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001). [CrossRef] [PubMed]
  30. C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003). [CrossRef]
  31. K. Ichimura, and H. Goto, "Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode," Phys. Rev. A 74, 033818 (2006). [CrossRef]
  32. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, "Precision measurement of ultralow losses of an asymmetric optical microcavity," Appl. Opt. 45, 7628-7631 (2006). [CrossRef] [PubMed]
  33. A. Yariv, Optical Electronics in Modern Communications, Fifth Edition (Oxford University Press, New York, 1997).
  34. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  35. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004). [CrossRef]
  36. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, "Optical cavities with ten million finesse," Opt. Express 15, 6768-6772 (2007). [CrossRef] [PubMed]
  37. V. S. Ilchenko, A. A. Savchenkov, J. Byrd, I. Solomatine, A. B. Matsko, D. Seidel, and L. Maleki, "Crystal quartz optical whispering-gallery cavities," Opt. Lett. 33, 1569-1571 (2008). [CrossRef] [PubMed]
  38. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983). [CrossRef]
  39. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005). [CrossRef]
  40. H. Goto, and K. Ichimura, "Upper bound for the success probability of cavity-mediated adiabatic transfer in the presence of dissipation," Phys. Rev. A 77, 013816 (2008). [CrossRef]
  41. H. Goto, and K. Ichimura, "Condition for fault-tolerant quantum computation with a cavity-QED scheme," Phys. Rev. A 82, 032311 (2010). [CrossRef]
  42. H. Goto, and K. Ichimura, "Expectation-value approach to photon statistics in cavity QED," Phys. Rev. A 70, 023815 (2004) (and references therein). [CrossRef]
  43. R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995). [CrossRef]
  44. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 2 Fig. 1 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited