OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23784–23789

GHz-bandwidth optical filters based on high-order silicon ring resonators

Po Dong, Ning-Ning Feng, Dazeng Feng, Wei Qian, Hong Liang, Daniel C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and Mehdi Asghari  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23784-23789 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Previously demonstrated high-order silicon ring filters typically have bandwidths larger than 100 GHz. Here we demonstrate 1-2 GHz-bandwidth filters with very high extinction ratios (~50 dB). The silicon waveguides employed to construct these filters have propagation losses of ~0.5 dB/cm. Each ring of a filter is thermally controlled by metal heaters situated on the top of the ring. With a power dissipation of ~72 mW, the ring resonance can be tuned by one free spectral range, resulting in wavelength-tunable optical filters. Both second-order and fifth-order ring resonators are presented, which can find ready application in microwave/radio frequency signal processing.

© 2010 OSA

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Optical Devices

Original Manuscript: September 9, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: October 19, 2010
Published: October 27, 2010

Po Dong, Ning-Ning Feng, Dazeng Feng, Wei Qian, Hong Liang, Daniel C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and Mehdi Asghari, "GHz-bandwidth optical filters based on high-order silicon ring resonators," Opt. Express 18, 23784-23789 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. RF photonic Technology in Optical Fiber Links, ed. W.S.C. Chang, (Cambridge University Press, 2002).
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006). [CrossRef]
  3. G. T. Reed, Silicon photonics, the state of the art (John Wiley and Sons, 2008).
  4. T. K. Woodward, T. C. Banwell, A. Agarwal, P. Toliver, and R. Menendez, “Signal processing in analog optical links,” Avionics, Fiber Optics, and Photonics Conference (AVFOP2009IEEE), pp. 17–18.
  5. M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27(12), 2105–2110 (2009). [CrossRef]
  6. P. Toliver, R. C. Menendez, T. C. Banwell, A. Agarwal, T. K. Woodward, N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Asghari, A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics (OFC 2010 IEEE), paper OWJ4.
  7. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis, a signal processing approach (Wiley 1999).
  8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004). [CrossRef]
  9. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006). [CrossRef]
  10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006). [CrossRef] [PubMed]
  11. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “High order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12(3), 320–322 (2000). [CrossRef]
  12. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007). [CrossRef] [PubMed]
  13. S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, 50th order series-coupled micro-ring resonator (IPGC 2008 IEEE), pp. 1 – 3.
  14. F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122–041124 (2006). [CrossRef]
  15. M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008).
  16. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010). [CrossRef] [PubMed]
  17. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  18. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited