OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23844–23856

Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities

Ying Li, Jiangjun Zheng, Jie Gao, Jing Shu, Mehmet Sirin Aras, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23844-23856 (2010)
http://dx.doi.org/10.1364/OE.18.023844


View Full Text Article

Enhanced HTML    Acrobat PDF (2017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on mode-gap photonic crystal cavities with light localization in an air mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up to 5 × 106. The mechanical mode is modeled to have fundamental resonance Ωm /2π of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for various operating parameters.

© 2010 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.5750) Optical devices : Resonators
(230.4685) Optical devices : Optical microelectromechanical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 10, 2010
Revised Manuscript: October 10, 2010
Manuscript Accepted: October 14, 2010
Published: October 28, 2010

Citation
Ying Li, Jiangjun Zheng, Jie Gao, Jing Shu, Mehmet Sirin Aras, and Chee Wei Wong, "Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities," Opt. Express 18, 23844-23856 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23844


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Meystre and M. Sargent III, “Mechanical Effects of Light,” in Elements of Quantum Optics (Springer, 2007), Chapter 6.
  2. S. Chu, “Laser manipulation of atoms and particles,” Science 253(5022), 861–866 (1991). [CrossRef] [PubMed]
  3. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  5. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  6. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]
  7. D. Van Thourhout and J. Roels, “Optomechanical Device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010). [CrossRef]
  8. C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51(3), 2537–2541 (1995). [CrossRef] [PubMed]
  9. S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49(5), 4055–4065 (1994). [CrossRef] [PubMed]
  10. I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92(7), 075507 (2004). [CrossRef] [PubMed]
  11. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]
  12. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005). [CrossRef] [PubMed]
  13. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005). [CrossRef] [PubMed]
  14. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006). [CrossRef] [PubMed]
  15. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006). [CrossRef] [PubMed]
  16. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]
  17. M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of Micro-Optomechanical Systems Via Cavity Enhanced Optical Dipole Forces,” Nat. Photonics 1(7), 416–422 (2007). [CrossRef]
  18. P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007). [CrossRef]
  19. R. Ma, A. Schliesser, P. Del’haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, “Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres,” Opt. Lett. 32(15), 2200–2202 (2007). [CrossRef] [PubMed]
  20. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99(9), 093902 (2007). [CrossRef] [PubMed]
  21. J. D. Thompson, B. M. Zwickl, A. M. Jayich, and S. M. Florian Marquardt, “Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 06715 (2008).
  22. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and I. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008). [CrossRef]
  23. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF Down-Converter based on Optomechanical Oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008). [CrossRef]
  24. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009). [CrossRef]
  25. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]
  26. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5(12), 909–914 (2009). [CrossRef]
  27. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464(7289), 697–703 (2010). [CrossRef] [PubMed]
  28. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4(4), 236–242 (2010). [CrossRef]
  29. V. B. Braginsky, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago, 1977).
  30. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Parametric Oscillatory instability in Fabri-Perot Interferometer,” Phys. Lett. A 287(5-6), 331–338 (2001). [CrossRef]
  31. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]
  32. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009). [CrossRef]
  33. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  34. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  35. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  36. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103(22), 223901 (2009). [CrossRef]
  37. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  38. A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity,” arXiv: 1006.3964.
  39. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006). [CrossRef] [PubMed]
  40. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonical crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008). [CrossRef]
  41. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  42. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17(22), 20078–20098 (2009). [CrossRef] [PubMed]
  43. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  44. S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, “Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs,” Opt. Express 18(9), 9164–9172 (2010). [CrossRef] [PubMed]
  45. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  46. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultra-high-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  47. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]
  48. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  49. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010). [CrossRef] [PubMed]
  50. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010). [CrossRef]
  51. J. Gao, J. F. McMillan, M.-C. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010). [CrossRef]
  52. F. Riboli, P. Bettotti, and L. Pavesi, “Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides,” Opt. Express 15(19), 11769–11775 (2007). [CrossRef] [PubMed]
  53. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong Optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81(12), 121101 (2010). [CrossRef]
  54. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009). [CrossRef]
  55. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  56. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]
  57. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 2), 066611 (2002). [CrossRef] [PubMed]
  58. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1246 (2004). [CrossRef]
  59. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Herrmann, O. Hess, and U. Gosele, ““Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1(1), 1–13 (2003). [CrossRef]
  60. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005). [CrossRef]
  61. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007). [CrossRef] [PubMed]
  62. Stephen D. Senturia, Microsystem Design (Springer 2000).
  63. C. Zener, “Internal Friction in Solids. I. Theory of Internal Friction in Reeds,” Phys. Rev. 52(3), 230–235 (1937). [CrossRef]
  64. T. H. Metcalf, B. B. Pate, D. M. Photiadis, and B. H. Houston, “Thermoelastic damping in micromechanical resonators,” Appl. Phys. Lett. 95(6), 061903 (2009). [CrossRef]
  65. C. Cohen-Tannoudji, B. Din, and F. Laloe, Quantum Mechanics (Hermann, Paris, 1977), Vol. 1, Chap. 2; Vol. 2, Chaps. 11 and 13.
  66. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited