OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23857–23864

Remote grating-assisted excitation of narrow-band surface plasmons

Tae-Woo Lee and Stephen K. Gray  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 23857-23864 (2010)
http://dx.doi.org/10.1364/OE.18.023857


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show, based on theoretical analysis and realistic simulations, how a grating embedded in a dielectric substrate can excite surface plasmon polaritons (SPPs) on the top side of a flat metal film far removed from the grating. This remote SPP excitation is characterized by a narrow spectral bandwidth and a high near-field intensity relative to the standard approach for exciting SPPs. The simplicity of the structure and the fact that it requires only normally incident light should make it relevant to the many applications that benefit from high quality SPPs on a flat metal film.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 16, 2010
Revised Manuscript: September 21, 2010
Manuscript Accepted: October 21, 2010
Published: October 28, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Tae-Woo Lee and Stephen K. Gray, "Remote grating-assisted excitation of 
narrow-band surface plasmons," Opt. Express 18, 23857-23864 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-23857


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46(2), 145–148 (1981). [CrossRef]
  2. V. A. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59(16), 10903–10909 (1999). [CrossRef]
  3. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938 (2004). [CrossRef]
  4. J. P. Huang and K. W. Yu, “Optical nonlinearity enhancement of graded metallic films,” Appl. Phys. Lett. 85(1), 94 (2004). [CrossRef]
  5. J. Toudert, H. Fernandez, D. Babonneau, S. Camelio, T. Girardeau, and J. Solis, “Linear and third-order nonlinear responses of multilayered Ag: Si3N4 nanocomposites,” Nanotechnology 20(47), 475705 (2009). [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  7. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009). [CrossRef] [PubMed]
  8. A. Baca, T. T. Truong, L. R. Cambrea, J. M. Montgomery, S. K. Gray, D. Abdula, T. R. Banks, J. Yao, R. G. Nuzzo, and J. A. Rogers, “Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94(24), 243109 (2009). [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  10. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  11. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006). [CrossRef] [PubMed]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, Berlin, 1988).
  13. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]
  14. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005). [CrossRef] [PubMed]
  15. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).
  16. T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86(14), 141105 (2005). [CrossRef]
  17. J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polaritons propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77(12), 125407 (2008). [CrossRef]
  18. M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sens. Actuators B Chem. 56(3), 189–197 (1999). [CrossRef]
  19. E. Hecht, Optics, 4th Edition (Addison-Wesley, Reading, MA, 2001). [PubMed]
  20. F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors in a microcavity structure,” Appl. Opt. 46(25), 6247–6250 (2007). [CrossRef] [PubMed]
  21. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmonos,” Nat. Phys. 3(5), 324–328 (2007). [CrossRef]
  22. J. Renger, S. Grafstrom, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surface and thin films,” Phys. Rev. B 76(4), 045431 (2007). [CrossRef]
  23. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited