OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23878–23890

Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations

Dennis Lehr, Michael Helgert, Michael Sundermann, Christoph Morhard, Claudia Pacholski, Joachim P. Spatz, and Robert Brunner  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23878-23890 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laterally structured antireflective sub-wavelength structures show unique properties with respect to broadband performance, damage threshold and thermal stability. Thus they are superior to classical layer based antireflective coatings for a number of applications. Dependent on the selected fabrication technology the local topography of the periodic structure may deviate from the perfect repetition of a sub-wavelength unit cell. We used rigorous coupled-wave analysis (RCWA) to simulate the efficiency losses due to scattering effects based on height and displacement variations between the individual protuberances. In these simulations we chose conical and Super-Gaussian shapes to approximate the real profile of structures fabricated in fused silica. The simulation results are in accordance with the experimentally determined optical properties of sub-wavelength structures over a broad wavelength range. Especially the transmittance reduction in the deep-UV could be ascribed to these variations in the sub-wavelength structures.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(290.0290) Scattering : Scattering
(310.1210) Thin films : Antireflection coatings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: June 30, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: July 29, 2010
Published: October 29, 2010

Dennis Lehr, Michael Helgert, Michael Sundermann, Christoph Morhard, Claudia Pacholski, Joachim P. Spatz, and Robert Brunner, "Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations," Opt. Express 18, 23878-23890 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. B. Clapham, and M. C. Hutley, “Reduction of lens reflexion by the ’moth eye’ principle,” Nature 244, 281–282 (1973). [CrossRef]
  2. A. R. Parker, “515 million years of structural colors,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000). [CrossRef]
  3. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef]
  4. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31(22), 4371–4376 (1993). [CrossRef]
  5. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1–4), 333–342 (1998). [CrossRef] [PubMed]
  6. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001). [CrossRef]
  7. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter,” Science 276(5317), 1401–1404 (1997). [CrossRef]
  8. L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz, and M. Möller, “Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates,” Adv. Funct. Mater. 13(4), 271–276 (2003). [CrossRef]
  9. K. Asakawa, and T. Hiraoka, “Nanopatterning with microdomains of Block Copolymers using reactive-ion etching selectivity,” Jpn. J. Appl. Phys. 41, 6112–6118 (2002). [CrossRef]
  10. J. P. Spatz, S. Mössmer, C. Hartmann, and M. M¨oller, “Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films,” Langmuir 16(2), 407–415 (2000). [CrossRef]
  11. R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14(10), 1153–1160 (2003). [CrossRef]
  12. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for highperformance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008). [CrossRef] [PubMed]
  13. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995). [CrossRef]
  14. S. A. Boden, and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008). [CrossRef]
  15. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupledwave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1085 (1995). [CrossRef]
  16. K. Hehl, “Unigit - versatile rigorous grating solver,” Jena, Germany, web site: http://www.unigit.com/.
  17. J. Bischoff, “Formulation of the normal vector RCWA for symmetric crossed gratings in symmetric mountings,” J. Opt. Soc. Am. A 27(5), 1024–1031 (2010). [CrossRef]
  18. R. Bräuer, and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33(34), 7875–7882 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited